

Bayesian Inference for Deep Learning

Inference and modern trends for Bayesian Neural Networks: Practical considerations on priors

Simone Rossi and Maurizio Filippone

Data Science Department, EURECOM (France)

Priors for Bayesian Neural Networks

Specifying a prior for Bayesian neural networks is difficult

 $W^{(l)}{}_{ij} \sim \mathcal{N}(0, \alpha^2)$

- Neural networks are extremely high-dimensional and unidentifiable.
 - \longrightarrow Reasoning about parameters is very challenging.
- Most work has resorted to priors of convenience.

 $\longrightarrow \mathcal{N}(0,1)$ and $\mathcal{N}(0,1/D^{(l-1)})$ are popular priors for BNN.

For notation, ψ is the set of parameters for the prior (α in this case).

Effect of priors in predictive tasks

Running a grid search is intractable for Bayesian models.

Wilson and Izmailov (2020). Bayesian Deep Learning and a Probabilistic Perspective of Generalization.

Prior for Bayesian neural networks

The prior on the parameters of a BNN induces an unpredictable prior over functions.

Prior for Bayesian Neural Networks

The prior $\mathcal{N}(0,1)$ is not always problematic, but it can be for deep architectures.

- The sampled functions tend to form straight horizontal lines.
- This is a well-known pathology stemming from increasing model's depth.

Gaussian processes as prior on functions

GP are a useful tool for choosing sensible priors on functions we indent to model.

Using Gaussian Processes as reference

Minimize the Wasserstein distance between samples of $p_{gp}(\mathbf{f})$ and $p_{nn}(\mathbf{f}; \psi)$.

$$\min_{\psi} W_1(p_{gp}, p_{nn}) = \min_{\psi} \max_{\phi} \mathbb{E}_q \left[\underbrace{\mathbb{E}_{p_{gp}}[\phi(\mathbf{f})] - \mathbb{E}_{p_{nn}}[\phi(\mathbf{f})]}_{\mathcal{L}(\psi, \phi)} \right],$$

where ϕ is the 1-Lipschitz function parameterized by a neural network.

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning

Using Gaussian Processes as reference

- The objective is fully sampled-based
 - \longrightarrow Not necessary to know the closed-form of the marginal density $p_{nn}(\mathbf{f}; \psi)$.
 - \longrightarrow Can consider any stochastic process as a target prior over functions.
- The objective can be optimized with gradient descent algorithms with back-propagation.

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning

"Learning" priors by matching stochastic processes

The flexibility of the scheme allows for using more complex prior distributions, like *normalizing flows*.

Grid-search? Functional prior!

Cross-validation with 64 parallel workers

Prior matters in practice (CIFAR10)

Architecture	Method	Accuracy (↑)	NLL (\downarrow)
VGG	Gauss. prior	81.25%	0.5826
	GPi Gauss. prior	82.94%	0.5292
	GPi Hierarchical prior	87.11%	0.406
PreResNet	Gauss. prior	85.45%	0.4915
	GPi Gauss. prior	86.41%	0.4513
	GPi hierarchical prior	88.31%	0.3796

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning

Empirical Bayes with approximate inference

Use Laplace approximation and Variational Inference as proxy to marginal likelihood optimization.

Khan et al. (2019). Approximate Inference Turns Deep Networks into Gaussian Processes. NeurIPS