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Priors for Bayesian Neural Networks

Specifying a prior for Bayesian neural networks is difficult

• Neural networks are extremely high-dimensional and unidentifiable.
−→ Reasoning about parameters is very challenging.

• Most work has resorted to priors of convenience.
−→ N (0, 1) and N (0, 1/D(l−1)) are popular priors for BNN.

For notation, ψ is the set of parameters for the prior (α in this case).
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Effect of priors in predictive tasks
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Running a grid search is intractable for Bayesian models.

Wilson and Izmailov (2020). Bayesian Deep Learning and a Probabilistic Perspective of Generalization.
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Prior for Bayesian neural networks

The prior on the parameters of a BNN induces an unpredictable prior over functions.
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Prior for Bayesian Neural Networks

The prior N (0, 1) is not always problematic, but it can be for deep architectures.

• The sampled functions tend to form straight horizontal lines.
• This is a well-known pathology stemming from increasing model’s depth.

Duvenaud et al. (2014). Avoiding Pathologies in Very Deep Networks. AISTATS
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Gaussian processes as prior on functions

GP are a useful tool for choosing sensible priors on functions we indent to model.
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Using Gaussian Processes as reference

(Bayesian) Neural Network

Gaussian Process

(Bayesian) Neural Network
with Optimized Priors

Minimize the Wasserstein distance between samples of pgp(f) and pnn(f;ψ).

min
ψ

W1(pgp, pnn) = min
ψ

max
φ

Eq

[
Epgp [φ(f)]− Epnn [φ(f)]︸ ︷︷ ︸

L(ψ,φ)

]
,

where φ is the 1-Lipschitz function parameterized by a neural network.

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning 6



Using Gaussian Processes as reference

(Bayesian) Neural Network

Gaussian Process

(Bayesian) Neural Network
with Optimized Priors

• The objective is fully sampled-based
−→ Not necessary to know the closed-form of the marginal density pnn(f;ψ).
−→ Can consider any stochastic process as a target prior over functions.

• The objective can be optimized with gradient descent algorithms with back-propagation.

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning
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“Learning” priors by matching stochastic processes
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The flexibility of the scheme allows for using more complex prior distributions, like normalizing
flows.
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Grid-search? Functional prior!

Cross-validation with 64 parallel workers
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Prior matters in practice (CIFAR10)

Architecture Method Accuracy (↑) NLL (↓)

VGG Gauss. prior 81.25% 0.5826
GPi Gauss. prior 82.94% 0.5292
GPi Hierarchical prior 87.11% 0.406

PreResNet Gauss. prior 85.45% 0.4915
GPi Gauss. prior 86.41% 0.4513
GPi hierarchical prior 88.31% 0.3796

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning
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Empirical Bayes with approximate inference

Use Laplace approximation and Variational Inference as proxy to marginal likelihood optimization.
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Khan et al. (2019). Approximate Inference Turns Deep Networks into Gaussian Processes. NeurIPS
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