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Priors for Bayesian Neural Networks

Specifying a prior for Bayesian neural networks is difficult

x h® h® y

W ~ N(0,a2)

e Neural networks are extremely high-dimensional and unidentifiable.
— Reasoning about parameters is very challenging.

e Most work has resorted to priors of convenience.
— N(0,1) and N(0,1/DU=1)) are popular priors for BNN.

For notation, 1) is the set of parameters for the prior (« in this case).



Effect of priors in predic tasks
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Running a grid search is intractable for Bayesian models.

Wilson and Izmailov (2020). Bayesian Deep Learning and a Probabilistic Perspective of Generalization.



Prior for Bayesian neural networks

The prior on the parameters of a BNN induces an unpredictable prior over functions.
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Prior for Bayesian Neural Networks

BNN prior with 2 layers BNN prior with 4 layers BNN prior with 8 layers
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The prior N'(0,1) is not always problematic, but it can be for deep architectures.

e The sampled functions tend to form straight horizontal lines.

e This is a well-known pathology stemming from increasing model’s depth.

Duvenaud et al. (2014). Avoiding Pathologies in Very Deep Networks. AISTATS



Gaussian processes as prior on functions

GP are a useful tool for choosing sensible priors on functions we indent to model.
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Using Gaussian Processes as reference

Gaussian Process

x bi ~ p(0:;§) N s © _
, f, ~ GP(0,K) =1 (Bayesian) Neural Network
X' k(x,x';0) —> with Optimized Priors
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Minimize the Wasserstein distance between samples of p,,(f) and pna(F; ).

min Wa(pgp. por) = min max Bq | By, [0(F)] ~ By, [0(F)] |
L(,p)

where ¢ is the 1-Lipschitz function parameterized by a neural network.

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning
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e The objective is fully sampled-based
— Not necessary to know the closed-form of the marginal density p,,(f; ).
—— Can consider any stochastic process as a target prior over functions.
e The objective can be optimized with gradient descent algorithms with back-propagation.

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning



“Learning” priors by matching stochastic processes

Target GP prior BNN prior
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The flexibility of the scheme allows for using more complex prior distributions, like normalizing
flows.



Grid-search? Functional prior!

Cross-validation with 64 parallel workers
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Prior matters in practice (CIFAR10)

Architecture Method Accuracy (1) NLL ()
VGG Gauss. prior 81.25% 0.5826
GPi Gauss. prior 82.94% 0.5292

GPi Hierarchical prior 87.11% 0.406

PreResNet  Gauss. prior 85.45% 0.4915
GPi Gauss. prior 86.41% 0.4513

GPi hierarchical prior 88.31% 0.3796

Tran et al. (2020). All You Need is a Good Functional Prior for Bayesian Deep Learning
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Empirical Bayes with approximate inference

Use Laplace approximation and Variational Inference as proxy to marginal likelihood optimization.
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Prior precision Prior precision

Khan et al. (2019). Approximate Inference Turns Deep Networks into Gaussian Processes. NeurlPS
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