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Approximate inference for Bayesian deep learning

• Collapse the posterior on the most likely value (Maximum-a-Posteriori or MAP)
• Approximate the intractable posterior:

• Use Variational Inference
• Use Laplace approximation (local approximation the MAP solution)

• Sample from the intractable posterior:
• Markov-Chain Monte-Carlo (Hamiltonian Monte-Carlo)
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Laplace approximation for
Bayesian neural networks



Laplace approximation

Idea: Local approximation around MAP solution
The Laplace approximation approximates the posterior by a Gaussian q(w) = N (wmap,Σ)
around the mode wmap with covariance Σ
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Laplace approximation

• Covariance Σ given by the Hessian of the posterior via Taylor expansion:

Σ = −
[
∇2

ww log p(w | y,X)
∣∣
w=wmap

]−1

• We need to compute the Hessian of

log p(w | y,X) ∝
∑N

i=1 log p(y i | f (xn; w)) + log p(w) + const.

The prior term is easy, the likelihood less.

MacKay (1991). Bayesian Model Comparison and Backprop Nets. NeurIPS
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Computational tractability of the Hessian (and approximations)

Computed through the Jacobian and Hessian matrix of the neural network f = f (x; w),

∇2
ww log p(y | f (x; w)) = Hw(x)>∇f log p(y | f) + Jw(x)>∇2

ff log p(y | f)Jw(x)

with [Jw(x)]ci = ∂fc (x;w)
∂ωi

and [Hw(x)]cij = ∂2fc (x;w)
∂ωi ∂ωj

.

Generalized Gauss-Newton approximation
Drop the first term completely

∇2
ww log p(y | f (x; w)) ≈ Jw(x)>∇2

ff log p(y | f)Jw(x)

This is a good approximation for locally linearized networks.

Schraudolph (2002). Fast curvature matrix-vector products for second-order gradient descent. Neural Comput.
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Quality of the Laplace approximation

Generally the Laplace approximation can be very rough as it puts a lot of mass in low probability
area of the true posterior.
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Laplace approximation for model selection

With Laplace approximation we can also derive another approximation to the marginal likelihood

log p(y |X,M) ≈ p(y |X,wmap,M) + log p(wmap |M) + 1
2 log

∣∣∣∣ 1
2π∇

2
ww log p(y,w |X,M)

∣∣∣∣
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Ensembles methods



A non-Bayesian approach: deep ensembles

Probabilistic, but non-Bayesian, baseline:

1. Let neural network f (x; w) parametrize a distribution p(f)
• For regression, the mean µ(x; w) and the variance σ(x; w) of a Gaussian distribution

2. Use a proper scoring rule as training criterion
• For regression, a Gaussian likelihood p(y | x; w) = N (y | µ(x; w), σ(x; w))

3. Train an ensemble of M networks with random initialization
4. Combine predictions at test time

p(y | x) = 1
M

M∑
i=1

p(y | x; wi )

Note: this is model combination, not Bayesian model average

Lakshminarayanan et al. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles.
NeurIPS
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Deep ensembles explore different modes
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Trajectories of randomly initialized neural networks explore different modes in function space,
which explains why deep ensembles trained with just random initializations work well in practice.

Fort et al. (2019). Deep Ensembles: A Loss Landscape Perspective. NeurIPS BDL Workshop
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A different perspective to ensemble using bootstrap

Consider M models with different regularization (e.g. prior) and perturbed data (e.g. likelihood).

1. Perturb the likelihood:
p(y | f (x; w)) = N (y | f (x; w), σ2I) perturbe====⇒ N (ỹm | f (x; w), σ2I) with ỹm ∼ N (y, σ2I)

2. Perturb the prior:
p(w) = N (w | 0, αI) perturbe====⇒ N (w | w̃m, αI) with w̃m ∼ N (w | 0, αI)

3. Run MAP on the perturbed model
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Bootstrap Ensembles as a Bayesian approximation

Under some conditions, {wm}M
m=1 are samples from the posterior of the original model.

Milios et al. (2020). Parametric Bootstrap Ensembles as Variational Inference. AABI 10



Taking an infinite-limit of neural
networks



A quick introduction to Gaussian Processes

“A Gaussian process is a collection of (infinite) random variables, any finite number of which
have a joint Gaussian distribution”.

f ∼ GP(m(·), κ(·, · |θ)) ⇒ p(f) = N (m,K)

m is the mean, K is the covariance computed for each pair of data with.

Rasmussen and Williams (2006). Gaussian Processes for Machine Learning, MIT Press 11



Tight connections with shallow neural networks

Bayesian Learning of Neural Networks. R. Neal (1996)
Priors over network parameters can be defined in such a way that the corresponding priors over
functions computed by the network reach reasonable limits as the number of hidden units goes
to infinity. [. . . ] The infinite network limit also provides insight into the properties of different
priors. A Gaussian prior for hidden-to-output weights results in a Gaussian process prior for
functions.
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Connection between shallow neural networks and GPs

Gaussian priors on weights: w1 ∼ N (0, α1I), w2 ∼ N (0, α2I).
Then f ∼ GP(0,K) in the limit of infinite network width.

K = cov(f) = Ep(w1,w2)[φ(Xw1)w2w>2 φ(Xw1)>]
= α2Ep(w1)[φ(Xw1)φ(Xw1)>]

Some choices of the activation function φ (e.g. cosine, ReLU,
tanh) lead to analytical kernels
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Same asymptotic behaviour in deep neural networks

These results are also valid for the deep case:

• Matthews et al. (2018). Gaussian Process Behaviour in Wide Deep Neural Networks. ICLR
• Lee et al. (2018). Deep Neural Networks as Gaussian Processes. ICLR
• Novak et al. (2019). Bayesian Deep Convolutional Networks with Many Channels are

Gaussian Processes. ICLR
• Garriga-Alonso et al. (2019). Deep Convolutional Networks as shallow Gaussian Processes.

ICLR
• Yang (2019). Wide Feedforward or Recurrent Neural Networks of Any Architecture are

Gaussian Processes. NeurIPS
• Khan et al. (2019). Approximate Inference Turns Deep Networks into Gaussian Processes.

NeurIPS
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Other research directions: Neural Tangent Kernel

The evolution of a neural network during training can be described by a kernel (the NTK).

The NTK is random at initialization and evolves during training, but in the infinite-width limit it
converges to an explicit limiting kernel and it stays constant during training
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Jacot et al. (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks. NeurIPS
Lee et al. (2019). Wide Neural Networks of Any Depth Evolve as Linear Models under Gradient Descent.

NeuIPS
He at al. (2020). Bayesian Deep Ensembles via the Neural Tangent Kernel. NeurIPS 15



Deep Gaussian Processes and Bayesian Neural Networks

The infinite-limit can be traded-off with compositions of functions:

Damianou and Lawrence (2013). Deep Gaussian Processes. AISTATS
Cutajar et al. (2017). Random Features Expansions for Deep Gaussian Processes. ICML
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Approximate Inference for Deep Gaussian processes
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