
Bayesian Inference for Deep Learning
Inference and modern trends for Bayesian Neural Networks: Sampling with
Stochastic Gradient methods

Simone Rossi and Maurizio Filippone

Data Science Department, EURECOM (France)

Markov chain Monte Carlo

Motivation

• Predictive distributions can be computed as:

p(y∗|x∗,Y,X) =
∫

p(y∗|x∗,w)p(w|Y,X)dw

• The integral is analytically intractable but we can approximate it as:

p(y∗|x∗,Y,X) ≈
MC∑
i=1

p(y∗|x∗,w(i))

as long as we can obtain samples w(i) ∼ p(w|Y,X)

• Markov chain Monte Carlo (MCMC) allows one to obtain sample from intractable
distribution

1

Motivation

• Predictive distributions can be computed as:

p(y∗|x∗,Y,X) =
∫

p(y∗|x∗,w)p(w|Y,X)dw

• The integral is analytically intractable but we can approximate it as:

p(y∗|x∗,Y,X) ≈
MC∑
i=1

p(y∗|x∗,w(i))

as long as we can obtain samples w(i) ∼ p(w|Y,X)
• Markov chain Monte Carlo (MCMC) allows one to obtain sample from intractable

distribution

1

MCMC

• The posterior density is known up to a normalization constant

p(w|X,Y) ∝ p(Y|X,w)p(w)

• For many MCMC algorithms that is enough to obtain samples from the posterior

• Stochastic MCMC algorithms relax the need to evaluate the likelihood and rely on
stochastic gradients of the log-likelihood

2

MCMC

• The posterior density is known up to a normalization constant

p(w|X,Y) ∝ p(Y|X,w)p(w)

• For many MCMC algorithms that is enough to obtain samples from the posterior
• Stochastic MCMC algorithms relax the need to evaluate the likelihood and rely on

stochastic gradients of the log-likelihood

2

Metropolis-Hastings (MH)

• Produces a sequence of samples – w(1),w(2), . . .

• Imagine we’ve just produced w(i−1)

• MH firsts proposes a possible w(i) (call it w̃(i)) based on w(i−1).

• MH then decides whether or not to accept w̃(i)

• If accepted, wi = w̃(i)

• If not, wi = w(i−1)

• Two distinct steps – proposal and acceptance.

3

Metropolis-Hastings (MH)

• Produces a sequence of samples – w(1),w(2), . . .

• Imagine we’ve just produced w(i−1)

• MH firsts proposes a possible w(i) (call it w̃(i)) based on w(i−1).

• MH then decides whether or not to accept w̃(i)

• If accepted, wi = w̃(i)

• If not, wi = w(i−1)

• Two distinct steps – proposal and acceptance.

3

Metropolis-Hastings (MH)

• Produces a sequence of samples – w(1),w(2), . . .

• Imagine we’ve just produced w(i−1)

• MH firsts proposes a possible w(i) (call it w̃(i)) based on w(i−1).

• MH then decides whether or not to accept w̃(i)

• If accepted, wi = w̃(i)

• If not, wi = w(i−1)

• Two distinct steps – proposal and acceptance.

3

Metropolis-Hastings (MH)

• Produces a sequence of samples – w(1),w(2), . . .

• Imagine we’ve just produced w(i−1)

• MH firsts proposes a possible w(i) (call it w̃(i)) based on w(i−1).

• MH then decides whether or not to accept w̃(i)

• If accepted, wi = w̃(i)

• If not, wi = w(i−1)

• Two distinct steps – proposal and acceptance.

3

Metropolis-Hastings – proposal

• Treat w̃(i) as a random variable conditioned on w(i−1)

• i.e. need to define p(w̃(i)|w(i−1))
• Note that this does not necessarily have to be similar to posterior we’re trying to sample from.

• Can choose whatever we like!

• e.g. use a Gaussian centered on w(i−1) with some covariance:

p(w̃(i)|w(i−1),Σp) = N (w(i−1),Σp)

4

Metropolis-Hastings – proposal

• Treat w̃(i) as a random variable conditioned on w(i−1)

• i.e. need to define p(w̃(i)|w(i−1))
• Note that this does not necessarily have to be similar to posterior we’re trying to sample from.

• Can choose whatever we like!
• e.g. use a Gaussian centered on w(i−1) with some covariance:

p(w̃(i)|w(i−1),Σp) = N (w(i−1),Σp)

4

Metropolis-Hastings – acceptance

• Choice of acceptance based on the following ratio:

r = p(w̃(i)|Y,X)
p(w(i−1)|Y,X)

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• Which simplifies to (all of which we can compute):

r = p(Y|X, w̃(i))p(w̃(i))
p(Y|X,w(i−1))p(w(i−1))

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• We now use the following rules:
• If r ≥ 1, accept: w(i) = w̃(i).
• If r < 1, accept with probability r .

• If we do this enough, we’ll eventually be sampling from p(w|Y,X), no matter where we
started!

• i.e. for any w(1)

5

Metropolis-Hastings – acceptance

• Choice of acceptance based on the following ratio:

r = p(w̃(i)|Y,X)
p(w(i−1)|Y,X)

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• Which simplifies to (all of which we can compute):

r = p(Y|X, w̃(i))p(w̃(i))
p(Y|X,w(i−1))p(w(i−1))

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• We now use the following rules:
• If r ≥ 1, accept: w(i) = w̃(i).
• If r < 1, accept with probability r .

• If we do this enough, we’ll eventually be sampling from p(w|Y,X), no matter where we
started!

• i.e. for any w(1)

5

Metropolis-Hastings – acceptance

• Choice of acceptance based on the following ratio:

r = p(w̃(i)|Y,X)
p(w(i−1)|Y,X)

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• Which simplifies to (all of which we can compute):

r = p(Y|X, w̃(i))p(w̃(i))
p(Y|X,w(i−1))p(w(i−1))

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• We now use the following rules:
• If r ≥ 1, accept: w(i) = w̃(i).
• If r < 1, accept with probability r .

• If we do this enough, we’ll eventually be sampling from p(w|Y,X), no matter where we
started!

• i.e. for any w(1)

5

Metropolis-Hastings – acceptance

• Choice of acceptance based on the following ratio:

r = p(w̃(i)|Y,X)
p(w(i−1)|Y,X)

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• Which simplifies to (all of which we can compute):

r = p(Y|X, w̃(i))p(w̃(i))
p(Y|X,w(i−1))p(w(i−1))

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

• We now use the following rules:
• If r ≥ 1, accept: w(i) = w̃(i).
• If r < 1, accept with probability r .

• If we do this enough, we’ll eventually be sampling from p(w|Y,X), no matter where we
started!

• i.e. for any w(1)

5

Metropolis-Hastings (MH) algorithm

Acceptance probability : r = p(Y|X, w̃(i))p(w̃(i))
p(Y|X,w(i−1))p(w(i−1))

p(w(i−1)|w̃(i),Σp)
p(w̃(i)|w(i−1),Σp)

.

Metropolis et al., JoCP, 1953 - Hastings, Biometrika, 1970 6

Metropolis-Hastings Derivation from Detailed Balance

• Detailed balance
p(w′|Y,X)p(w|w′) = p(w|Y,X)p(w′|w)

is a sufficient condition to ensure existence of a stationary distribution p(w|Y,X)

• Ergodicity (Morkov chain being aperiodic and positive recurrent) ensures uniqueness of the
stationary distribution p(w|Y,X)

7

Metropolis-Hastings Derivation from Detailed Balance

• Detailed balance
p(w′|Y,X)p(w|w′) = p(w|Y,X)p(w′|w)

is a sufficient condition to ensure existence of a stationary distribution p(w|Y,X)
• Ergodicity (Morkov chain being aperiodic and positive recurrent) ensures uniqueness of the

stationary distribution p(w|Y,X)

7

Metropolis-Hastings Derivation from Detailed Balance

• Rewrite detailed balance condition:

p(w′|Y,X)p(w|w′) = p(w|Y,X)p(w′|w) ⇒ p(w′|Y,X)
p(w|Y,X) = p(w′|w)

p(w|w′)

• Break transition in proposal and acceptance steps:

p(w′|w) = pro(w′|w) acc(w′|w)

• Substitute back and rearrange:

acc(w′|w)
acc(w|w′) = p(w′|Y,X)pro(w|w′)

p(w|Y,X)pro(w|w′)

• Easy to verify that the MH acceptance rule satisfies this condition

8

Metropolis-Hastings Derivation from Detailed Balance

• Rewrite detailed balance condition:

p(w′|Y,X)p(w|w′) = p(w|Y,X)p(w′|w) ⇒ p(w′|Y,X)
p(w|Y,X) = p(w′|w)

p(w|w′)

• Break transition in proposal and acceptance steps:

p(w′|w) = pro(w′|w) acc(w′|w)

• Substitute back and rearrange:

acc(w′|w)
acc(w|w′) = p(w′|Y,X)pro(w|w′)

p(w|Y,X)pro(w|w′)

• Easy to verify that the MH acceptance rule satisfies this condition

8

Beyond Random Walk

• MH can be inefficient due to its random walk nature!

• Improve efficiency by using gradient information
• Hamiltonian Monte Carlo (HMC):

• The proposal mechanism uses the gradient of the unnormalized log-density:

∇w log [p(Y|X, w)p(w)]

to simulate trajectories in the space of parameters.
• Thanks to this, proposals w̃(i) can be far away from the starting point w(i−1)!

9

Beyond Random Walk

• MH can be inefficient due to its random walk nature!
• Improve efficiency by using gradient information

• Hamiltonian Monte Carlo (HMC):
• The proposal mechanism uses the gradient of the unnormalized log-density:

∇w log [p(Y|X, w)p(w)]

to simulate trajectories in the space of parameters.
• Thanks to this, proposals w̃(i) can be far away from the starting point w(i−1)!

9

Beyond Random Walk

• MH can be inefficient due to its random walk nature!
• Improve efficiency by using gradient information
• Hamiltonian Monte Carlo (HMC):

• The proposal mechanism uses the gradient of the unnormalized log-density:

∇w log [p(Y|X, w)p(w)]

to simulate trajectories in the space of parameters.
• Thanks to this, proposals w̃(i) can be far away from the starting point w(i−1)!

9

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• Introduce momentum variables p and introduce the kinetic energy

V = 1
2p>M−1p

where M is referred to as the mass matrix

• Then interpret the negative of the log-density as the potential energy:

U = − log [p(Y|X,w)p(w)]

• Now simulate the Hamiltonian system with energy H = U + V with a random p ∼ N (0,M)
and for a random duration T .

• This means solving Hamilton-Jacobi equations:
dw
dt = dH

dp = dV
dp

dp
dt = −dH

dw = −dU
dw

10

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• Introduce momentum variables p and introduce the kinetic energy

V = 1
2p>M−1p

where M is referred to as the mass matrix
• Then interpret the negative of the log-density as the potential energy:

U = − log [p(Y|X,w)p(w)]

• Now simulate the Hamiltonian system with energy H = U + V with a random p ∼ N (0,M)
and for a random duration T .

• This means solving Hamilton-Jacobi equations:
dw
dt = dH

dp = dV
dp

dp
dt = −dH

dw = −dU
dw

10

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• Introduce momentum variables p and introduce the kinetic energy

V = 1
2p>M−1p

where M is referred to as the mass matrix
• Then interpret the negative of the log-density as the potential energy:

U = − log [p(Y|X,w)p(w)]

• Now simulate the Hamiltonian system with energy H = U + V with a random p ∼ N (0,M)
and for a random duration T .

• This means solving Hamilton-Jacobi equations:
dw
dt = dH

dp = dV
dp

dp
dt = −dH

dw = −dU
dw

10

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• Solving Hamilton-Jacobi equations for a given T is generally intractable

• We need discretization of the differential equations but . . .
• . . . the choice of discretization method matters in making HMC correct
• The discretization needs to preserve reversibility so that:

p(w(i−1)|w̃(i),Σp) = p(w̃(i)|w(i−1),Σp)

• Leapfrog Integrator ensures reversibility – sketch of the integration scheme:

p(i−1)
t+∆t/2 = p(i−1)

t − ∆t
2 (∇wU)(w(i−1)

t)

w(i−1)
t+∆t = w(i−1)

t + ∆tM−1p(i−1)
t+∆t/2

p(i−1)
t+∆t = p(i−1)

t+∆t/2 −
∆t
2 (∇wU)(w(i−1)

t+∆t)

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• Solving Hamilton-Jacobi equations for a given T is generally intractable
• We need discretization of the differential equations but . . .
• . . . the choice of discretization method matters in making HMC correct

• The discretization needs to preserve reversibility so that:

p(w(i−1)|w̃(i),Σp) = p(w̃(i)|w(i−1),Σp)

• Leapfrog Integrator ensures reversibility – sketch of the integration scheme:

p(i−1)
t+∆t/2 = p(i−1)

t − ∆t
2 (∇wU)(w(i−1)

t)

w(i−1)
t+∆t = w(i−1)

t + ∆tM−1p(i−1)
t+∆t/2

p(i−1)
t+∆t = p(i−1)

t+∆t/2 −
∆t
2 (∇wU)(w(i−1)

t+∆t)

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• Solving Hamilton-Jacobi equations for a given T is generally intractable
• We need discretization of the differential equations but . . .
• . . . the choice of discretization method matters in making HMC correct
• The discretization needs to preserve reversibility so that:

p(w(i−1)|w̃(i),Σp) = p(w̃(i)|w(i−1),Σp)

• Leapfrog Integrator ensures reversibility – sketch of the integration scheme:

p(i−1)
t+∆t/2 = p(i−1)

t − ∆t
2 (∇wU)(w(i−1)

t)

w(i−1)
t+∆t = w(i−1)

t + ∆tM−1p(i−1)
t+∆t/2

p(i−1)
t+∆t = p(i−1)

t+∆t/2 −
∆t
2 (∇wU)(w(i−1)

t+∆t)

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• Solving Hamilton-Jacobi equations for a given T is generally intractable
• We need discretization of the differential equations but . . .
• . . . the choice of discretization method matters in making HMC correct
• The discretization needs to preserve reversibility so that:

p(w(i−1)|w̃(i),Σp) = p(w̃(i)|w(i−1),Σp)

• Leapfrog Integrator ensures reversibility – sketch of the integration scheme:

p(i−1)
t+∆t/2 = p(i−1)

t − ∆t
2 (∇wU)(w(i−1)

t)

w(i−1)
t+∆t = w(i−1)

t + ∆tM−1p(i−1)
t+∆t/2

p(i−1)
t+∆t = p(i−1)

t+∆t/2 −
∆t
2 (∇wU)(w(i−1)

t+∆t)

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• We started integrating from a pair (w(i−1),p(i−1))
• Acceptance of a new pair (w̃(i), p̃(i)) after a few integration steps requires evaluating

H = − log [p(Y|X,w)p(w)] + 1
2p>M−1p

at (w̃(i), p̃(i)) and (w(i−1),p(i−1))

• The system has no friction so in theory all proposals should be accepted!
• However, the integrator introduces errors which require the acceptance based on the ratio of

H at time T and 0.

Duane et al., Physics Lett. B, 1987 – Neal, 1993

12

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• We started integrating from a pair (w(i−1),p(i−1))
• Acceptance of a new pair (w̃(i), p̃(i)) after a few integration steps requires evaluating

H = − log [p(Y|X,w)p(w)] + 1
2p>M−1p

at (w̃(i), p̃(i)) and (w(i−1),p(i−1))
• The system has no friction so in theory all proposals should be accepted!

• However, the integrator introduces errors which require the acceptance based on the ratio of
H at time T and 0.

Duane et al., Physics Lett. B, 1987 – Neal, 1993

12

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

• We started integrating from a pair (w(i−1),p(i−1))
• Acceptance of a new pair (w̃(i), p̃(i)) after a few integration steps requires evaluating

H = − log [p(Y|X,w)p(w)] + 1
2p>M−1p

at (w̃(i), p̃(i)) and (w(i−1),p(i−1))
• The system has no friction so in theory all proposals should be accepted!
• However, the integrator introduces errors which require the acceptance based on the ratio of

H at time T and 0.

Duane et al., Physics Lett. B, 1987 – Neal, 1993

12

Sampling trajectories with HMC

13

Stochastic Hamiltonian Monte Carlo

• HMC is expensive for two reasons:
• Simulating the dynamics requires calculating the gradient:

N∑
i=1

∇w log [p(yi |xi , w)p(w)] O(N)

• Accepting proposals requires calculating part of the Hamiltonian:

log [p(Y|X, w)p(w)] O(N)

• Stochastic-Gradient HMC:
• Mini-batch unbiased estimate of the gradient based on indices set IM :

N
M
∑
i∈IM

∇w log [p(yi |xi , w)p(w)] O(M)

• Always accept!
• Always accepting would introduce bias in the sampling
• In SG-HMC, the dynamics is modified to ensure that the bias is negligible

Chen et al., ICML, 2014 14

Stochastic Hamiltonian Monte Carlo

• HMC is expensive for two reasons:
• Simulating the dynamics requires calculating the gradient:

N∑
i=1

∇w log [p(yi |xi , w)p(w)] O(N)

• Accepting proposals requires calculating part of the Hamiltonian:

log [p(Y|X, w)p(w)] O(N)

• Stochastic-Gradient HMC:
• Mini-batch unbiased estimate of the gradient based on indices set IM :

N
M
∑
i∈IM

∇w log [p(yi |xi , w)p(w)] O(M)

• Always accept!
• Always accepting would introduce bias in the sampling
• In SG-HMC, the dynamics is modified to ensure that the bias is negligible

Chen et al., ICML, 2014 14

Stochastic-Gradient Hamiltonian Monte Carlo

• The main result follows from assuming that:

N
M
∑
i∈IM

∇w log [p(yi |xi ,w)p(w)] =: ∇̃U(w) ≈ ∇U(w) +N (0,Q(w))

by the central limit theorem
• The dynamics now can be seen as a discretization of the following SDE:

dw = dV
dp dt = M−1p

dp = −dŨ
dwdt = −∇U(w)dt +N (0, εQ(w)dt)

where ε is the step-size.
• The stationary distribution is no longer the posterior of interest

15

Stochastic-Gradient Hamiltonian Monte Carlo

• Stochastic-Gradient HMC modifies the dynamics by introducing a friction term:

dw = M−1p

dp = −∇U(w)dt +N (0, εQ(w)dt)− 1
2εQM−1pdt

• The stationary distribution is now the posterior of interest!

• In practice we need to estimate Q.

Chen et al. (2014). Stochastic Gradient Hamiltonian Monte Carlo, ICML

16

Stochastic-Gradient Hamiltonian Monte Carlo

• Stochastic-Gradient HMC modifies the dynamics by introducing a friction term:

dw = M−1p

dp = −∇U(w)dt +N (0, εQ(w)dt)− 1
2εQM−1pdt

• The stationary distribution is now the posterior of interest!
• In practice we need to estimate Q.

Chen et al. (2014). Stochastic Gradient Hamiltonian Monte Carlo, ICML

16

Sampling trajectories of SG-HMC

The discretized dynamics become

∆w = εM−1p

∆p = −ε∇Ũ(w) +N (0, 2ε(C− B̃))− εCM−1

with

• Ũ(w) is the mini-batch estimation of the log-joint
• ε is the step size
• C is the friction matrix
• B̃ is the estimation of the stochastic gradient noise covariance

17

Sampling trajectories of SG-HMC

∆w = εM−1p

∆p = −ε∇Ũ(w) +N (0, 2ε(C− B̃))− εCM−1

17

Preconditioning SG-HMC

Naive SG-HMC introduces some additional quantities to be estimated:

• Gradient variance V̂

V̂ ≈ E(∇Ũ(w))2 estimated with exponential moving average

• Mass M
M−1 = diag

(
V̂− 1

2

)
• Matrix B̃

B̃ = 1
2εV̂

• Friction
C = C I

Springenberg et al. (2016). Bayesian Optimization with Robust Bayesian Neural Networks. NeurIPS

18

Choosing a good friction term is important to achieve convergence

0.001 0.002 0.005 0.01 0.015
Step size

0.2

0.4

0.6

0.8

1.0

D
is

t.
 t

o
 p

o
st

e
ri

o
r

Batch size = 16

0.001 0.002 0.005 0.01 0.015
Step size

Batch size = 32

0.001 0.002 0.005 0.01 0.015
Step size

Batch size = 64

0.001 0.002 0.005 0.01 0.015
Step size

C=0.5

C=1

C=5

C=10

C=50

C=100
0.2

0.4

0.6

0.8

1.0

D
is

t.
 t

o
 p

o
st

e
ri

o
r

Full batch

Franzese et al. (2021). A Unified View of Stochastic Hamiltonian Sampling. arXiv 19

How good are stochastic gradient MCMC methods in practice? (ResNet20)

HMC MF-VI SG-HMC SG-HMC (CLR)
85

86

87

88

89

90
Test Accuracy (CIFAR 10)

HMC MF-VI SG-HMC SG-HMC (CLR)

86

88

90

92

94

Posterior Agreement (CIFAR 10)

HMC results obtained using 512 TPUs for 60 milions epochs (v2-512 instance retails at 384
$/hour).

Izmailov et al. (2021). What Are Bayesian Neural Network Posteriors Really Like? ICML

20

References i

• MacKay (1992). A Practical Bayesian Framework for Backpropagation Networks. Neural
computation.

• Neal (1996). Bayesian Learning for Neural Networks. Springer

• Neal (2011). MCMC using Hamiltonian Dynamics. Hand-book of Markov Chain Monte Carlo

• Ahn et al. (2012). Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring. ICML

• Chen et al. (2014). Stochastic gradient Hamiltonian Monte Carlo. ICML

• Betancourt (2015). The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and
Naive Data Subsampling. ICML

• Chen et al. (2015). On the Convergence of Stochastic Gradient MCMC Algorithms with
High-Order Integrators. NeurIPS

• Springenberg et al. (2016). Bayesian Optimization with Robust Bayesian Neural Networks. NeurIPS

• Mandt et al. (2017). Stochastic Gradient Descent as Approximate Bayesian Inference. JMLR

21

References ii

• Zhang et al. (2020). Amagold: Amortized Metropolis Adjustment for Efficient Stochastic Gradient
MCMC. AISTATS

• Zhang et al. (2020). Cyclical stochastic gradient MCMC for Bayesian deep learning. ICLR

• Cobb et al. (2021). Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with
Symmetric Splitting. UAI

• Franzese et al. (2021). A Unified View of Stochastic Hamiltonian Sampling. arXiv

• Izmailov et al. (2021). What Are Bayesian Neural Network Posteriors Really Like? ICML

22

	Markov chain Monte Carlo

