S UIHEC O
Bayesian Inference for Deep Learning

Inference and modern trends for Bayesian Neural Networks: Sampling with
Stochastic Gradient methods

Simone Rossi and Maurizio Filippone

Data Science Department, EURECOM (France)

Markov chain Monte Carlo

e Predictive distributions can be computed as:

psle Y X) = [oLy e wp(w] Y. X)dw

e The integral is analytically intractable but we can approximate it as:

MC
P(Y+1%x, Y, X) 2 > p(yalxa, w()
=il

as long as we can obtain samples w() ~ p(w|Y, X)

e Predictive distributions can be computed as:

psle Y X) = [oLy e wp(w] Y. X)dw

e The integral is analytically intractable but we can approximate it as:

MC
P(Y+1%x, Y, X) 2 > p(yalxa, w()
=il

as long as we can obtain samples w() ~ p(w|Y, X)

e Markov chain Monte Carlo (MCMC) allows one to obtain sample from intractable
distribution

MCMC

e The posterior density is known up to a normalization constant
p(w|X,Y) o< p(Y|X, w)p(w)

e For many MCMC algorithms that is enough to obtain samples from the posterior

MCMC

e The posterior density is known up to a normalization constant
p(w|X,Y) o< p(Y|X, w)p(w)

e For many MCMC algorithms that is enough to obtain samples from the posterior

e Stochastic MCMC algorithms relax the need to evaluate the likelihood and rely on
stochastic gradients of the log-likelihood

Metropolis-Hastings (MH)

2)

PR

e Produces a sequence of samples — w(1), w(

e Imagine we've just produced w('—1)

Metropolis-Hastings (MH)

e Produces a sequence of samples — wD), w(? .
e Imagine we've just produced w('—1)
e MH firsts proposes a possible w() (call it w(7)) based on w(—1).

Metropolis-Hastings (MH)

Produces a sequence of samples — w1, w(®) .

i—1)

e Imagine we've just produced w(
MH firsts proposes a possible w(") (call it w()) based on w(=1).

MH then decides whether or not to accept w(/)

e If accepted, w; = w()
e If not, w; = w1

Metropolis-Hastings (MH)

Produces a sequence of samples — w(!), w(® .

i—1)

e Imagine we've just produced w(
MH firsts proposes a possible w(") (call it w()) based on w(=1).

MH then decides whether or not to accept w(/)

e If accepted, w; = w()
e If not, w; = w1

Two distinct steps — proposal and acceptance.

Metropolis-Hastings — proposal

e Treat w() as a random variable conditioned on w('—1)
e i.e. need to define p(w()|w(i—1))
e Note that this does not necessarily have to be similar to posterior we're trying to sample from.

e Can choose whatever we like!

Metropolis-Hastings — proposal

Treat w(?) as a random variable conditioned on w(—1)

e i.e. need to define p(w(|w(i—1))
e Note that this does not necessarily have to be similar to posterior we're trying to sample from.
e Can choose whatever we like!

e c.g. use a Gaussian centered on w(/~1) with some covariance:

p(WO i1 E,) = M(wi=D, X,

Metropolis-Hastings — acceptance

e Choice of acceptance based on the following ratio:

WY, X) p(wl-Djw, ¥,)
p(WUDIY, X) pw®|wii-1), 5,)

Metropolis-Hastings — acceptance

e Choice of acceptance based on the following ratio:

p(wWO|Y,X) p(wi—D|w), ,)
r = 1 — - .
p(WU=DIY, X) p(w|wi-1), 5,)

e Which simplifies to (all of which we can compute):

L POYIX wi)p(wlD) p(wl—DjwD, 3,)
p(Y X, wi=D)p(wli=D) 5w |jw(i-1),)

Metropolis-Hastings — acceptance

e Choice of acceptance based on the following ratio:

p(wWO|Y,X) p(wi—D|w), ,)
r = 1 — - .
p(WU=DIY, X) p(w|wi-1), 5,)

e Which simplifies to (all of which we can compute):

L POYIX wi)p(wlD) p(wl—DjwD, 3,)
p(Y X, wi=D)p(wli=D) 5w |jw(i-1),)

e We now use the following rules:
o If r>1, accept: w() = w(.
e If r <1, accept with probability r.

Metropolis-Hastings — acceptance

e Choice of acceptance based on the following ratio:

p(wO|Y,X) p(wli—Djw), x,)

r = .
(i—1) T e (i—

p(w Y, X) p(wwli-1) 3)

e Which simplifies to (all of which we can compute):

L POYIX wi)p(wlD) p(wl—DjwD, 3,)
p(Y X, wi=D)p(wli=D) 5w |jw(i-1),)

e We now use the following rules:
o If r>1, accept: wl) = w0,
e If r <1, accept with probability r.
e If we do this enough, we'll eventually be sampling from p(w|Y, X), no matter where we
started!

e ie. forany w®)

Metropolis-Hastings (MH) algorithm

p(YIX, wD)p(w() p(wlDjw, 5,)
p(Y X, wi=D)p(wli=D) 5 |w(i-1),)

Acceptance probability : r =

0 100 200

0 100 200

Metropolis et al., JoCP, 1953 - Hastings, Biometrika, 1970 6

Metropolis-Hastings Derivation from Detailed Balance

e Detailed balance
p(W'[Y, X)p(wlw') = p(w[Y, X)p(w'|w)

is a sufficient condition to ensure existence of a stationary distribution p(w|Y, X)

Metropolis-Hastings Derivation from Detailed Balance

e Detailed balance
p(w'lY, X)p(w|w') = p(w|Y, X)p(w'|w)
is a sufficient condition to ensure existence of a stationary distribution p(w|Y, X)
e Ergodicity (Morkov chain being aperiodic and positive recurrent) ensures uniqueness of the

stationary distribution p(w|Y, X)

Metropolis-Hastings Derivation from Detailed Balance

e Rewrite detailed balance condition:

’ / / p(w'|Y, X) _ p(w'|w)
p(W'Y, X)p(w|w’) = p(w]Y, X)p(w'|w) = p(wlY,X) — p(w|w’)

Metropolis-Hastings Derivation from Detailed Balance

Rewrite detailed balance condition:

/ " = p(w wlw p(W/|Y,X) — p(W/|W)
p(WY, X)p(wiw’) = p(w]¥, X)p(w'|w) = Zriy = piwiw)

Break transition in proposal and acceptance steps:

p(w/|w) = pro(w’|w) ace(w’|w)

Substitute back and rearrange:

acc(w'|w) p(w'Y, X)pro(w|w’)

acc(wlw’) p(w|Y, X)pro(w|w’)

e Easy to verify that the MH acceptance rule satisfies this condition

Beyond Random Walk

e MH can be inefficient due to its random walk nature!

Beyond Random Walk

e MH can be inefficient due to its random walk nature!

e Improve efficiency by using gradient information

Beyond Random Walk

e MH can be inefficient due to its random walk nature!

e Improve efficiency by using gradient information
e Hamiltonian Monte Carlo (HMC):

e The proposal mechanism uses the gradient of the unnormalized log-density:
Vu log [p(Y[X, w)p(w)]

to simulate trajectories in the space of parameters.
e Thanks to this, proposals w(/) can be far away from the starting point w!/ =11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e Introduce momentum variables p and introduce the kinetic energy
1
V=2p'M7p

where M is referred to as the mass matrix

10

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e Introduce momentum variables p and introduce the kinetic energy
1
V==p M 1p
2
where M is referred to as the mass matrix
e Then interpret the negative of the log-density as the potential energy:

U = —log[p(Y[X,w)p(w)]

10

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e Introduce momentum variables p and introduce the kinetic energy
1
V=2p'M7p

where M is referred to as the mass matrix
e Then interpret the negative of the log-density as the potential energy:

U = —log[p(Y[X,w)p(w)]

e Now simulate the Hamiltonian system with energy H = U + V with a random p ~ N(0, M)
and for a random duration T.
e This means solving Hamilton-Jacobi equations:
dw dH dV
dt dp dp
dp dH dU

dt ~ dw dw
10

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e Solving Hamilton-Jacobi equations for a given T is generally intractable

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e Solving Hamilton-Jacobi equations for a given T is generally intractable
e We need discretization of the differential equations but ...

e ... the choice of discretization method matters in making HMC correct

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

Solving Hamilton-Jacobi equations for a given T is generally intractable

We need discretization of the differential equations but ...

e ... the choice of discretization method matters in making HMC correct

The discretization needs to preserve reversibility so that:

p(w(D W), E,) = p(w|wl-D, £,)

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e Solving Hamilton-Jacobi equations for a given T is generally intractable
e We need discretization of the differential equations but ...
e ... the choice of discretization method matters in making HMC correct

e The discretization needs to preserve reversibility so that:

p(w(D W), E,) = p(w|wl-D, £,)

Leapfrog Integrator ensures reversibility — sketch of the integration scheme:
i-1 i1 At i-1
Pirae =P = (V)i)

i—1 i—1 fi=dl
W£+A2 = WE‘ NV 1P£+A2/2

i—1 i—1
Al = pimi/z—f(v U)(wiTA))

11

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e We started integrating from a pair (w(=1), p(i=1))

e Acceptance of a new pair (\7\/(")7 f)(")) after a few integration steps requires evaluating
|
H = —log [p(Y[X,w)p(w)] + 5p M~"p

at (W(f)’ﬁ(i)) and (w(=1) pli—1))

Duane et al., Physics Lett. B, 1987 — Neal, 1993

12

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

e We started integrating from a pair (w(=1), p(i=1))

e Acceptance of a new pair (\7\/(")7 f)(")) after a few integration steps requires evaluating
|
H = —log [p(Y[X,w)p(w)] + 5p M~"p

at (W(f)’ﬁ(i)) and (w(=1) pli—1))

e The system has no friction so in theory all proposals should be accepted!

Duane et al., Physics Lett. B, 1987 — Neal, 1993

12

Hamiltonian Monte Carlo (or Hybrid Monte Carlo)

We started integrating from a pair (w(=1), p(i=1)

e Acceptance of a new pair (\7\/(")7 f)(")) after a few integration steps requires evaluating
|
H = —log [p(Y[X,w)p(w)] + 5p M~"p

at (W(f)’ﬁ(i)) and (w(=1) pli—1))

The system has no friction so in theory all proposals should be accepted!

However, the integrator introduces errors which require the acceptance based on the ratio of
H at time T and 0.

Duane et al., Physics Lett. B, 1987 — Neal, 1993

12

Sampling trajectories with HMC

0 100 200

0 100 200

Stochastic Hamiltonian Monte Carlo

e HMC is expensive for two reasons:
e Simulating the dynamics requires calculating the gradient:

Y Vuloglp(yilxi,w)p(w)] O(N)

e Accepting proposals requires calculating part of the Hamiltonian:

log [p(Y|X,w)p(w)] O(N)

Chen et al., ICML, 2014 14

Stochastic Hamiltonian Monte Carlo

e HMC is expensive for two reasons:
e Simulating the dynamics requires calculating the gradient:

N
> Vi logp(yilxi, w)p(w)] O(N)
i=1
e Accepting proposals requires calculating part of the Hamiltonian:
log [p(Y[X,w)p(w)] O(N)
e Stochastic-Gradient HMC:

e Mini-batch unbiased estimate of the gradient based on indices set Zy:

NS Valogp(yibxi, wp(w)] O(M)
€Ty
e Always accept!
e Always accepting would introduce bias in the sampling
e In SG-HMC, the dynamics is modified to ensure that the bias is negligible

Chen et al., ICML, 2014 14

Stochastic-Gradient Hamiltonian Monte Carlo

e The main result follows from assuming that:

N _
v > Vulog [p(yilxi, w)p(w)] =: VU(w) &~ VU(w) + N/(0, Q(w))
i€ZIm
by the central limit theorem

e The dynamics now can be seen as a discretization of the following SDE:

dv
dw=—dt=M"1p
dp

i
dp = de‘jdt — _VU(w)dt + N(0, eQ(w)dt)
where € is the step-size.

e The stationary distribution is no longer the posterior of interest

15

Stochastic-Gradient Hamiltonian Monte Carlo

e Stochastic-Gradient HMC modifies the dynamics by introducing a friction term:
dw=M"1p

dp = —VU(w)dt + N(0, cQ(w)dt) — %eQM*lpdt

e The stationary distribution is now the posterior of interest!

Chen et al. (2014). Stochastic Gradient Hamiltonian Monte Carlo, ICML

16

Stochastic-Gradient Hamiltonian Monte Carlo

e Stochastic-Gradient HMC modifies the dynamics by introducing a friction term:
dw=M"1p

dp = —VU(w)dt + N(0, cQ(w)dt) — %eQM*lpdt

e The stationary distribution is now the posterior of interest!

e In practice we need to estimate Q.

Chen et al. (2014). Stochastic Gradient Hamiltonian Monte Carlo, ICML

16

Sampling trajectories of SG-HMC

The discretized dynamics become
Aw =eM™'p
Ap = —eVU(w) + N(0,2¢(C — B)) — eCM

with

LNJ(W) is the mini-batch estimation of the log-joint

€ is the step size

C is the friction matrix
e B is the estimation of the stochastic gradient noise covariance

17

Sampling trajectories of SG-HMC

Aw =eM1p
Ap = —eVU(w) + N (0,2¢(C — B)) — eCM~?

5.0 -
2.5 1
g 0.0 1

—2.5 1

750 T T
0 100 200

5.0 -
2.5 4

g 0.0
—2.5 1

750 T T
0 100 200 17

Preconditioning SG-HMC

Naive SG-HMC introduces some additional quantities to be estimated:

~

e Gradient variance V

V& E(VU(w))? estimated with exponential moving average

e Mass M
M-! = diag (v—%)
e Matrix B 1
B = EGV
e Friction
c=a

Springenberg et al. (2016). Bayesian Optimization with Robust Bayesian Neural Networks. NeurlPS
18

Choosing a good friction term is important to achieve convergence

Full batch
_ 1.0
5 Cc=0.5
@ 0.8 ® c=1
g ® c=5
a =
O ® c=10
: 0.4 @® C=50
@ @® C=100
D02
0.001 0.002 0.005 0.01 0.015
Step size
Batch size = 16 Batch size = 32 Batch size = 64

_ 1.0

S

@ 0.8

3

%]

20.6

(=}

04

e

R

802 " _—ae=—"" | e G

0.001 0002 0.005 001 0015 000l 0002 0005 001 0015 0001 0.002 0.005 001 0.015
Step size Step size Step size

Franzese et al. (2021). A Unified View of Stochastic Hamiltonian Sampling. arXiv e

How good are stochastic gradient MCMC methods in practice? (ResNet20)

Test Accuracy (CIFAR 10) Posterior Agreement (CIFAR 10)
| 94 | |

89 A
92 A

88 A
90 -
87 A
88
86

86

85 -
HMC MF-VI SG-HMC SG-HMC (CLR) HMC MF-VI SG-HMC SG-HMC (CLR)

HMC results obtained using 512 TPUs for 60 milions epochs (v2-512 instance retails at 384
$/hour).

Izmailov et al. (2021). What Are Bayesian Neural Network Posteriors Really Like? 1CML

20

References i

e MacKay (1992). A Practical Bayesian Framework for Backpropagation Networks. Neural
computation.

e Neal (1996). Bayesian Learning for Neural Networks. Springer

e Neal (2011). MCMC using Hamiltonian Dynamics. Hand-book of Markov Chain Monte Carlo
e Ahn et al. (2012). Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring. 1CML
e Chen et al. (2014). Stochastic gradient Hamiltonian Monte Carlo. ICML

e Betancourt (2015). The Fundamental Incompatibility of Scalable Hamiltonian Monte Carlo and
Naive Data Subsampling. 1ICML

e Chen et al. (2015). On the Convergence of Stochastic Gradient MCMC Algorithms with
High-Order Integrators. NeurlPS

e Springenberg et al. (2016). Bayesian Optimization with Robust Bayesian Neural Networks. NeurlPS

e Mandt et al. (2017). Stochastic Gradient Descent as Approximate Bayesian Inference. JMLR

21

References ii

e Zhang et al. (2020). Amagold: Amortized Metropolis Adjustment for Efficient Stochastic Gradient
MCMC. AISTATS

e Zhang et al. (2020). Cyclical stochastic gradient MCMC for Bayesian deep learning. ICLR

e Cobb et al. (2021). Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with
Symmetric Splitting. UAI

e Franzese et al. (2021). A Unified View of Stochastic Hamiltonian Sampling. arXiv

e Izmailov et al. (2021). What Are Bayesian Neural Network Posteriors Really Like? 1CML

22

	Markov chain Monte Carlo

