
Bayesian Inference for Deep Learning
Inference and modern trends for Bayesian Neural Networks: Variational Inference

Simone Rossi and Maurizio Filippone

Data Science Department, EURECOM (France)

Roadmap of the tutorial

• Introduction to Bayesian Inference
• Bayesian inference as Optimization with Variational Inference

- Introduction to variational inference (objective and gradients)
- Challenges and solutions for variational inference on Bayesian neural networks

• Sampling with MCMC methods
• Alternatives for Approximate Bayesian Deep Learning
• Gaussian processes and Bayesian neural networks
• Priors and Model Selection
• Uncertainty Quantification with Bayesian Neural Networks

1

An Introduction to Bayesian
Neural Networks with
Monte-Carlo Dropout

Let’s reuse what we know

Dropout is a simple and powerful method to avoid overfitting in deep neural networks.

At each iteration of train time, some units are dropped (with probability p).
At test time, all units are considered.

Srivastava et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR

2

Let’s reuse what we know

Dropout is a simple and powerful method to avoid overfitting in deep neural networks.

At each iteration of train time, some units are dropped (with probability p).

At test time, all units are considered.

Srivastava et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR

2

Let’s reuse what we know

Dropout is a simple and powerful method to avoid overfitting in deep neural networks.

At each iteration of train time, some units are dropped (with probability p).
At test time, all units are considered.

Srivastava et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR

2

What happens if we use multiple dropout masks also at test time?

Compute the mean prediction as ŷ? ≈ 1
T
∑T

t f (x?; [{W̃
(1)
, . . . , W̃

(L)
}]t) and evaluate the

variance at test point Var[ŷ?]

Gal and Ghahramani (2016). Dropout as a Bayesian Approximation, ICML

3

A bit more formal

• Training with regularized loss ...

L = 1
N

N∑
i=1

e(yi , f (xi)) + λ

L∑
l=1
‖W(l)‖2

. . . equivalent to do approximate Bayesian inference.

• If we define w = {W1, . . . ,WL} and a “posterior” distribution q(w) such that,

Wi = Mi · diag(zi), with zij ∼ Bern(pi)

we can use the following objective

LELBO = −
N∑

i=1

∫
log p(yi | xi ,w)q(w) dw + KL [q(w) ‖ p(w)]

Why? What is this?

4

A bit more formal

• Training with regularized loss ...

L = 1
N

N∑
i=1

e(yi , f (xi)) + λ

L∑
l=1
‖W(l)‖2

. . . equivalent to do approximate Bayesian inference.
• If we define w = {W1, . . . ,WL} and a “posterior” distribution q(w) such that,

Wi = Mi · diag(zi), with zij ∼ Bern(pi)

we can use the following objective

LELBO = −
N∑

i=1

∫
log p(yi | xi ,w)q(w) dw + KL [q(w) ‖ p(w)]

Why? What is this?

4

An Introduction to Variational
Inference

Our problem setup

• Model: f (x; w) is a L-layer neural network
with weights w = {W(1), . . . ,W(L)}

• Likelihood:

p(Y |X,w) =
N∏

n=1
p(yn|xn,w) =

N∏
n=1

p(yn|f (xn; w))

• Prior:

p(w) =
L∏

l=1
p(W(i)) =

L∏
i=1

∏
jk
N (W (l)

jk | 0, 1)

• Posterior (using Bayes’s theorem):

p(w|Y,X) = p(Y|X,w)p(w)
p(Y|X)

We can’t compute the marginal likelihood . . .

p(Y|X) =
∫

p(Y|X,w)p(w) dw

. . . and we can’t compute the predictive distribution:

p(y∗|x∗, y,X) =
∫

p(y∗|x∗,w)p(w|Y,X) dw

5

Our problem setup

• Model: f (x; w) is a L-layer neural network
with weights w = {W(1), . . . ,W(L)}

• Likelihood:

p(Y |X,w) =
N∏

n=1
p(yn|xn,w) =

N∏
n=1

p(yn|f (xn; w))

• Prior:

p(w) =
L∏

l=1
p(W(i)) =

L∏
i=1

∏
jk
N (W (l)

jk | 0, 1)

• Posterior (using Bayes’s theorem):

p(w|Y,X) = p(Y|X,w)p(w)
p(Y|X)

We can’t compute the marginal likelihood . . .

p(Y|X) =
∫

p(Y|X,w)p(w) dw

. . . and we can’t compute the predictive distribution:

p(y∗|x∗, y,X) =
∫

p(y∗|x∗,w)p(w|Y,X) dw
5

Variational inference

Solutions:

• Collapse the posterior on the most likely value (Maximum-a-Posteriori or MAP)
• Approximate the intractable posterior:

• Use Variational Inference

• Local approximation:
• Use Laplace approximation (local approximation at the MAP solution)

• Sample from the intractable posterior:
• Markov-Chain Monte-Carlo (Hamiltonian Monte-Carlo)

6

Variational inference

Solutions:

• Collapse the posterior on the most likely value (Maximum-a-Posteriori or MAP)
• Approximate the intractable posterior:

• Use Variational Inference

• Local approximation:
• Use Laplace approximation (local approximation at the MAP solution)

• Sample from the intractable posterior:
• Markov-Chain Monte-Carlo (Hamiltonian Monte-Carlo)

6

Variational Inference

Main idea
Instead of trying to solve intractable integrals, let’s solve an optimization problem.

A very general recipe:

• Introduce a set Q of distributions q(w)
• Define an objective which measures the “distance” between an arbitrary distribution

q(w) ∈ Q and p(w|Y,X)
• In the set of possible solutions Q, find the best q(w) that minimizes the “distance” to

p(w |Y,X)
Interpret q(w) as a distribution that approximates the intractable p(w|Y,X)

7

Variational Inference

Main idea
Instead of trying to solve intractable integrals, let’s solve an optimization problem.

A very general recipe:

• Introduce a set Q of distributions q(w)
• Define an objective which measures the “distance” between an arbitrary distribution

q(w) ∈ Q and p(w|Y,X)
• In the set of possible solutions Q, find the best q(w) that minimizes the “distance” to

p(w |Y,X)
Interpret q(w) as a distribution that approximates the intractable p(w|Y,X)

7

Visual illustration of Variational Inference

Space of all possible solutions given a likelihood/prior pair

p(w |Y,X)

8

Visual illustration of Variational Inference

Space of all possible solutions given a likelihood/prior pair

p(w |Y,X)

Set of approximating distributions Q

8

Visual illustration of Variational Inference

Space of all possible solutions given a likelihood/prior pair

p(w |Y,X)

Set of approximating distributions Q

“Distance”

q(w)

8

Visual illustration of Variational Inference

Space of all possible solutions given a likelihood/prior pair

p(w |Y,X)

Set of approximating distributions Q

“D
ista

nce”

qbest(w)

8

Variational Inference - Form of the approximation

• The mean-field approach imposes independent distributions for each component of w

q(w) =
L∏

l=1

D(l)
in∏

i=1

D(l)
out∏

j=1
q(W (l)

ij)

For notation purposes, all weights are concatenated in w ∈ RP (P is the number of weights
in the network)

• We start with Gaussian distributions

q(w) =
P∏

i=1
q(w i) =

P∏
i=1
N (w i |µi , σ

2
i)

µi , σ
2
i are called variational parameters (for notation, they are collected into ν)

9

Variational Inference - Form of the approximation

• The mean-field approach imposes independent distributions for each component of w

q(w) =
L∏

l=1

D(l)
in∏

i=1

D(l)
out∏

j=1
q(W (l)

ij)

For notation purposes, all weights are concatenated in w ∈ RP (P is the number of weights
in the network)

• We start with Gaussian distributions

q(w) =
P∏

i=1
q(w i) =

P∏
i=1
N (w i |µi , σ

2
i)

µi , σ
2
i are called variational parameters (for notation, they are collected into ν)

9

Variational Inference - Objective

• We will use the KL divergence to measure the “distance” between the two distributions,

KL [q(w;ν) ‖ p(w|Y,X)] =
∫

q(w;ν) log q(w;ν)
p(w|Y,X) dw = Eq(w;ν)

[
log q(w;ν)

p(w|Y,X)

]
• A tractable objective to optimize q(w;ν) is obtained by manipulating the KL divergence

KL [q(w;ν) ‖ p(w|Y,X)] = −Eq(w;ν) [log p(Y|X,w)] + KL [q(w;ν) ‖ p(w)] + log p(Y|X)

• The last term is the problematic one . . .

10

Variational Inference - Objective

• We will use the KL divergence to measure the “distance” between the two distributions,

KL [q(w;ν) ‖ p(w|Y,X)] =
∫

q(w;ν) log q(w;ν)
p(w|Y,X) dw = Eq(w;ν)

[
log q(w;ν)

p(w|Y,X)

]
• A tractable objective to optimize q(w;ν) is obtained by manipulating the KL divergence

KL [q(w;ν) ‖ p(w|Y,X)] = −Eq(w;ν) [log p(Y|X,w)] + KL [q(w;ν) ‖ p(w)] + log p(Y|X)

• The last term is the problematic one . . .

10

Variational Inference - Objective

• . . . but manipulating the previous expression

log p(Y|X)− KL [q(w;ν) ‖ p(w|Y,X)] = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν) ‖ p(w)]︸ ︷︷ ︸
LELBO

we have a computable objective
• Minimizing the original KL is equivalent to maximize LELBO

Note that KL [q(w;ν) ‖ p(w|Y,X)] ≥ 0:

• The right hand side is a lower bound to the marginal likelihood (hence the name)
• If we can make q(w;ν) equal to the posterior, our objective will be equal to the marginal

likelihood!

11

Variational Inference - Objective

• . . . but manipulating the previous expression

log p(Y|X)− KL [q(w;ν) ‖ p(w|Y,X)] = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν) ‖ p(w)]︸ ︷︷ ︸
LELBO

we have a computable objective
• Minimizing the original KL is equivalent to maximize LELBO

Note that KL [q(w;ν) ‖ p(w|Y,X)] ≥ 0:

• The right hand side is a lower bound to the marginal likelihood (hence the name)
• If we can make q(w;ν) equal to the posterior, our objective will be equal to the marginal

likelihood!

11

Variational Inference - Objective

Variational objective (a.k.a. evidence lower bound) to be maximized wrt q(w;ν)

LELBO = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν)‖p(w)]

• First term is a model fitting term:

Eq(w;ν) [log p(Y|X,w)]

the higher the better the parameters drawn from q(w;ν) are at modeling the labels
• Second term is a regularization term:

−KL [q(w;ν)‖p(w)]

which penalizes q(w;ν) deviating too much from the prior

12

Variational Inference - Objective

Variational objective (a.k.a. evidence lower bound) to be maximized wrt q(w;ν)

LELBO = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν)‖p(w)]

• First term is a model fitting term:

Eq(w;ν) [log p(Y|X,w)]

the higher the better the parameters drawn from q(w;ν) are at modeling the labels

• Second term is a regularization term:

−KL [q(w;ν)‖p(w)]

which penalizes q(w;ν) deviating too much from the prior

12

Variational Inference - Objective

Variational objective (a.k.a. evidence lower bound) to be maximized wrt q(w;ν)

LELBO = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν)‖p(w)]

• First term is a model fitting term:

Eq(w;ν) [log p(Y|X,w)]

the higher the better the parameters drawn from q(w;ν) are at modeling the labels
• Second term is a regularization term:

−KL [q(w;ν)‖p(w)]

which penalizes q(w;ν) deviating too much from the prior

12

Variational Inference - Computation

LELBO = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν)‖p(w)]

• The second term can be expressed analytically by using the expression of the KL divergence
and it does not depend on the neural network architecture

• The first expectation is never analytically available for Bayesian neural networks but it can
be approximated using Monte Carlo integration:

Eq(w;ν) [log p(Y|X,w)] ≈ 1
NMC

NMC∑
i=1

log p(Y|X, w̃(h)), w̃(h) ∼ q(w;ν)

Hoffman et al. (2013). Stochastic Variational Inference. JMLR

13

Variational Inference - Computation

LELBO = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν)‖p(w)]

• The second term can be expressed analytically by using the expression of the KL divergence
and it does not depend on the neural network architecture

• The first expectation is never analytically available for Bayesian neural networks but it can
be approximated using Monte Carlo integration:

Eq(w;ν) [log p(Y|X,w)] ≈ 1
NMC

NMC∑
i=1

log p(Y|X, w̃(h)), w̃(h) ∼ q(w;ν)

Hoffman et al. (2013). Stochastic Variational Inference. JMLR

13

Variational Inference - Computation

LELBO = 1
NMC

NMC∑
i=1

log p(Y|X, w̃(h))− KL [q(w;ν)‖p(w)]

Remember: this estimator is unbiased and its variance shrinks ∝ 1/NMC,
independently of the dimensionality.

1 10 100 1000 10000
Monte Carlo samples

−750

−500

−250

0

E
L

B
O

Monte Carlo estimation of the ELBO

14

Variational Inference - Optimization

We need to compute the gradients of the objective w.r.t the variational parameters ν

∇νLELBO = ∇νEq(w;ν) [log p(Y|X,w)]−∇νKL [q(w;ν)‖p(w)]

• The second term is easy (everything is deterministic)

• The first term requires a bit of work

15

Variational Inference - Optimization

We need to compute the gradients of the objective w.r.t the variational parameters ν

∇νLELBO = ∇νEq(w;ν) [log p(Y|X,w)]−∇νKL [q(w;ν)‖p(w)]

• The second term is easy (everything is deterministic)
• The first term requires a bit of work

15

Variational Inference - Optimization

• The Monte Carlo approximation

Eq(w;ν) [log p(Y|X,w)] ≈ 1
NMC

NMC∑
h=1

log p(Y|X, w̃(h))

makes it tricky to optimize the objective
• With q(w;ν) fixed, when we resample w from q(w;ν) we obtain a different value!
• How can we make gradient updates to the µi , σ

2
i parameters of q(w;ν)?

• Answer: freeze the randomness within Monte Carlo!

16

Variational Inference - Optimization

• The Monte Carlo approximation

Eq(w;ν) [log p(Y|X,w)] ≈ 1
NMC

NMC∑
h=1

log p(Y|X, w̃(h))

makes it tricky to optimize the objective
• With q(w;ν) fixed, when we resample w from q(w;ν) we obtain a different value!
• How can we make gradient updates to the µi , σ

2
i parameters of q(w;ν)?

• Answer: freeze the randomness within Monte Carlo!

16

Variational Inference - Reparameterization trick

∇νEq(w;ν) log p(Y|X,w)

Idea:

• Samples of w can be obtained by a deterministic transformation φ of a random variable
ε ∼ p(ε), such that p(ε) does not depend on the variational parameters

• The variational parameters ν are parameters of the function φ
• Use the chain rule of differentiation to push the gradient though this function φ

ε

p(ε)

w

q(w)
φ(·;ν) log p(Y|X,w)

17

Variational Inference - Reparameterization trick (Derivation)

Key observation

∇νEq(w;ν) log p(Y|X,w) = Ep(ε)∇ν log p(Y|X,w)|w=φ(ε;ν)

Now, we can turn the gradient of an expectation into an expectation of a gradient.

∇νEq(w;ν) log p(Y|X,w) = ∇νEp(ε) log p(Y|X,w)|w=φ(ε;ν)

= Ep(ε)
[
∇ν log p(Y|X,w)|w=φ(ε;ν)

]
= Ep(ε)

[
∇w log p(Y|X,w)|w=φ(ε;ν)∇ν

]
≈ 1

NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

Good news: if you use any auto-diff tool (PyTorch, Tensorflow, JAX, NumPyro, etc.), you will
never compute this gradients manually.

18

Variational Inference - Reparameterization trick (Derivation)

Key observation

∇νEq(w;ν) log p(Y|X,w) = Ep(ε)∇ν log p(Y|X,w)|w=φ(ε;ν)

Now, we can turn the gradient of an expectation into an expectation of a gradient.

∇νEq(w;ν) log p(Y|X,w) = ∇νEp(ε) log p(Y|X,w)|w=φ(ε;ν)

= Ep(ε)
[
∇ν log p(Y|X,w)|w=φ(ε;ν)

]

= Ep(ε)
[
∇w log p(Y|X,w)|w=φ(ε;ν)∇ν

]
≈ 1

NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

Good news: if you use any auto-diff tool (PyTorch, Tensorflow, JAX, NumPyro, etc.), you will
never compute this gradients manually.

18

Variational Inference - Reparameterization trick (Derivation)

Key observation

∇νEq(w;ν) log p(Y|X,w) = Ep(ε)∇ν log p(Y|X,w)|w=φ(ε;ν)

Now, we can turn the gradient of an expectation into an expectation of a gradient.

∇νEq(w;ν) log p(Y|X,w) = ∇νEp(ε) log p(Y|X,w)|w=φ(ε;ν)

= Ep(ε)
[
∇ν log p(Y|X,w)|w=φ(ε;ν)

]
= Ep(ε)

[
∇w log p(Y|X,w)|w=φ(ε;ν)∇νw

]

≈ 1
NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

Good news: if you use any auto-diff tool (PyTorch, Tensorflow, JAX, NumPyro, etc.), you will
never compute this gradients manually.

18

Variational Inference - Reparameterization trick (Derivation)

Key observation

∇νEq(w;ν) log p(Y|X,w) = Ep(ε)∇ν log p(Y|X,w)|w=φ(ε;ν)

Now, we can turn the gradient of an expectation into an expectation of a gradient.

∇νEq(w;ν) log p(Y|X,w) = ∇νEp(ε) log p(Y|X,w)|w=φ(ε;ν)

= Ep(ε)
[
∇ν log p(Y|X,w)|w=φ(ε;ν)

]
= Ep(ε)

[
∇w log p(Y|X,w)|w=φ(ε;ν)∇νφ(ε;ν)

]

≈ 1
NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

Good news: if you use any auto-diff tool (PyTorch, Tensorflow, JAX, NumPyro, etc.), you will
never compute this gradients manually.

18

Variational Inference - Reparameterization trick (Derivation)

Key observation

∇νEq(w;ν) log p(Y|X,w) = Ep(ε)∇ν log p(Y|X,w)|w=φ(ε;ν)

Now, we can turn the gradient of an expectation into an expectation of a gradient.

∇νEq(w;ν) log p(Y|X,w) = ∇νEp(ε) log p(Y|X,w)|w=φ(ε;ν)

= Ep(ε)
[
∇ν log p(Y|X,w)|w=φ(ε;ν)

]
= Ep(ε)

[
∇w log p(Y|X,w)|w=φ(ε;ν)∇νφ(ε;ν)

]
≈ 1

NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

Good news: if you use any auto-diff tool (PyTorch, Tensorflow, JAX, NumPyro, etc.), you will
never compute this gradients manually.

18

Variational Inference - Reparameterization trick (Derivation)

Key observation

∇νEq(w;ν) log p(Y|X,w) = Ep(ε)∇ν log p(Y|X,w)|w=φ(ε;ν)

Now, we can turn the gradient of an expectation into an expectation of a gradient.

∇νEq(w;ν) log p(Y|X,w) = ∇νEp(ε) log p(Y|X,w)|w=φ(ε;ν)

= Ep(ε)
[
∇ν log p(Y|X,w)|w=φ(ε;ν)

]
= Ep(ε)

[
∇w log p(Y|X,w)|w=φ(ε;ν)∇νφ(ε;ν)

]
≈ 1

NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

Good news: if you use any auto-diff tool (PyTorch, Tensorflow, JAX, NumPyro, etc.), you will
never compute this gradients manually.

18

Variational Inference - Reparameterization trick (Properties)

∇νEq(w;ν) log p(Y|X,w) ≈ 1
NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

• Estimation of the gradients is unbiased
• Need to be able to sample from p(ε), but not from q(w;ν)
• The likelihood p(Y|X,w) must be differentiable →

The neural network f (x; w) must be differentiable

19

Variational Inference with Stochastic Optimization

L̃ELBO = 1
NMC

NMC∑
h=1

log p(Y|X, w̃(h))− KL [q(w;ν)‖p(w)]

• We can get unbiased estimate by selecting M out of N data

log p(Y|X, w̃(h)) ≈ N
M

∑
i∈minibatch

log p(yi |xi , w̃(h))

• We can use stochastic gradient optimization of our approximate variational objective with
w̃(h) = f (ε̃(h);ν) and ε̃(h) ∼ p(ε)

Hoffman et al. (2013). Stochastic Variational Inference. JMLR

20

Variational Inference with Stochastic Optimization

ν′ = ν + αt
2 ∇ν(L̃ELBO) αt → 0

Robbins and Monro, AoMS, 1951

21

A simple animation of stochastic variational inference in practice

22

Advances in Variational Inference
for Bayesian Deep Learning

Variance analysis of Stochastic Variational Inference

Let Li = log p(y i | xi ,w) the likelihood contribution from {y i , xi} in minibatch of size M

Var [log p(Y|X,w)] = N2
(

1
M Var[Li] + M − 1

M Cov[Li , Lj]
)

Solutions:

• Make Cov[Li , Lj] = 0 by resampling p(ε) for every data-point (for each layer,
NMC ×M × Din × Dout times)

I Computational intractable

• Move the stochasticity from the weights to the activations
I The local reparameterization trick

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS

23

Variance analysis of Stochastic Variational Inference

Let Li = log p(y i | xi ,w) the likelihood contribution from {y i , xi} in minibatch of size M

Var [log p(Y|X,w)] = N2
(

1
M Var[Li] + M − 1

M Cov[Li , Lj]
)

Solutions:

• Make Cov[Li , Lj] = 0 by resampling p(ε) for every data-point (for each layer,
NMC ×M × Din × Dout times)

I Computational intractable

• Move the stochasticity from the weights to the activations
I The local reparameterization trick

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS

23

Variance analysis of Stochastic Variational Inference

Let Li = log p(y i | xi ,w) the likelihood contribution from {y i , xi} in minibatch of size M

Var [log p(Y|X,w)] = N2
(

1
M Var[Li] + M − 1

M Cov[Li , Lj]
)

Solutions:

• Make Cov[Li , Lj] = 0 by resampling p(ε) for every data-point (for each layer,
NMC ×M × Din × Dout times)

I Computational intractable

• Move the stochasticity from the weights to the activations
I The local reparameterization trick

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS

23

Variance analysis of Stochastic Variational Inference

Let Li = log p(y i | xi ,w) the likelihood contribution from {y i , xi} in minibatch of size M

Var [log p(Y|X,w)] = N2
(

1
M Var[Li] + M − 1

M Cov[Li , Lj]
)

Solutions:

• Make Cov[Li , Lj] = 0 by resampling p(ε) for every data-point (for each layer,
NMC ×M × Din × Dout times)

I Computational intractable
• Move the stochasticity from the weights to the activations

I The local reparameterization trick

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS

23

The local reparameterization trick

If q(W ij) = N (W ij |µij , σ
2
ij),

then q(Aij) = N (Aij |mij , s2
ij), with

mij =
∑

k
X ikµkj , s2

ij =
∑

k
X 2

ikσ
2
kj

Sampling from q(A) requires only to sample only
M × Dout times from q(ε).

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS 24

The local reparameterization trick (summary)

−60 −40 −20 0
dB

0.00

0.02

0.04

0.06

0.08
D

en
si

ty
No local reparam.

−60 −40 −20 0
dB

0.00

0.05

0.10

0.15

With local reparam.

SNR analysis of stochastic variational inference (MLP-MNIST-1.80M param.)

Practical improvements for training due to lower stochastic variance (speed-up convergence of
LELBO or smaller batch-size)

Adapted from github.com/JavierAntoran/Bayesian-Neural-Networks

25

Richer family of parameterizations

Problem:
Mean-field Gaussians, albeit very simple to
implement, is generally a rough approximation.

0 1 2

w0

0.0

0.5

1.0

1.5

2.0

2.5

w
1

Factorized Gaussian

Solution:
Introduce correlations among weights (i.e.
Gaussian with non-diagonal covariance)

0 1 2

w0

0.0

0.5

1.0

1.5

2.0

2.5

w
1

Full Gaussian

26

Richer family of parameterizations

Problem:
Mean-field Gaussians, albeit very simple to
implement, is generally a rough approximation.

0 1 2

w0

0.0

0.5

1.0

1.5

2.0

2.5

w
1

Factorized Gaussian

Solution:
Introduce correlations among weights (i.e.
Gaussian with non-diagonal covariance)

0 1 2

w0

0.0

0.5

1.0

1.5

2.0

2.5

w
1

Full Gaussian

26

Here is where we deviate from standard VI methods

Working with full covariance is completely intractable
Assume we have one hidden layer with weights matrix W of dimension 256× 256. From
reshaping W in vector form w ∈ R65536, the covariance Σ is a matrix 65536× 65536.

Memory required: ∼ 16 GB (only to store Σ, in single-point precision)

Simple solution:
Use mean-field for columns and full covariance for the rows of W:,i .

q(W) =
256∏
i=1

q(W:,i) =
256∏
i=1
N (W:,i |µi ,Σi)

where now Σi is a 256× 256 covariance matrix.

27

Here is where we deviate from standard VI methods

Working with full covariance is completely intractable
Assume we have one hidden layer with weights matrix W of dimension 256× 256. From
reshaping W in vector form w ∈ R65536, the covariance Σ is a matrix 65536× 65536.

Memory required: ∼ 16 GB (only to store Σ, in single-point precision)

Simple solution:
Use mean-field for columns and full covariance for the rows of W:,i .

q(W) =
256∏
i=1

q(W:,i) =
256∏
i=1
N (W:,i |µi ,Σi)

where now Σi is a 256× 256 covariance matrix.

27

Putting some structure in the covariance matrix

(a) Factorized (b) MVG (c) Block Triangular (d) Full

Zhang et al. (2018). Noisy Natural Gradient as Variational Inference. ICML

28

Advances in computational efficient variational approximations

Matrix Variate Gaussian distribution

q(W) =MN (W |M,U,V) =
exp(1

2 Tr[V−1(W−M)>U−1(W−M)])
(2π)DinDout/2|V|Dout/2|U|Din/2

M ∈ RDin×Dout is the mean, U ∈ RDin×Din is the covariance matrix among rows and
V ∈ RDout×Dout is the covariance matrix among columns.

Connected with Gaussian distribution:

vec(W) ∼ N (vec(M),V⊗U)

Louizos and Welling (2016). Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.
ICML

29

Advances in computational efficient variational approximations

Matrix Variate Gaussian distribution

q(W) =MN (W |M,U,V) =
exp(1

2 Tr[V−1(W−M)>U−1(W−M)])
(2π)DinDout/2|V|Dout/2|U|Din/2

M ∈ RDin×Dout is the mean, U ∈ RDin×Din is the covariance matrix among rows and
V ∈ RDout×Dout is the covariance matrix among columns.

Reparameterization trick for A = XW:

q(A) =MN (XM,XUX>,V)

Louizos and Welling (2016). Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.
ICML

29

Structured posterior with connection to kernel methods

Impose a structure on the weight matrix inspired by scalable kernel methods

W =

S1


H
+1 −1 −1 +1

+1 +1 −1 −1

+1 −1 +1 −1

+1 +1 +1 +1


g∼N (µ,Σ)


H
+1 −1 −1 +1

+1 +1 −1 −1

+1 −1 +1 −1

+1 +1 +1 +1


S2


Benefit:
• Space complexity for storing W:
O(D2) −→ O(D).

• Time complexity for Wx:
O(D2) −→ O(D log D).

cov{g}

cov{vect(W)}

Rossi at al. (2020). Walsh-Hadamard Variational Inference for Bayesian Deep Learning. NeurIPS 30

Keeping an eye to energy efficiency

1000 2000 3000
0

20
40
60
80

100
120
140
160
180
200

Energy = 20.24 Wh

Energy = 30.51 Wh

Energy = 191.09 Wh

Time elapsed [s]
Po

we
rd

ra
w

[W
]

Comparison between Monte Carlo dropout (), Matrix Variate Gaussian () and Hadamard
factorization ().

31

Low rank factorization with variational inference

Perfoming tensor decomposition with variational inference is not straightforward.

0 20,000 40,000
0.00

0.05

0.10

0.15

0.20

0.25

Test Error

0 20,000 40,000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Test MNLL

Hadamard fact. (64) Tensor fact. (64)

Hadamard fact. (256) Tensor fact. (256)

The redundant variational parameterization induced by the tensor cores makes the optimization
landscapes highly multi-modal, thus leading to slow convergence.

Rossi at al. (2020). Walsh-Hadamard Variational Inference for Bayesian Deep Learning. NeurIPS

32

Imposing low-rank structure by doing inference on a subset of weights

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(a) Point estimation

x1 x2

h2h1 h3

y

0.50.5

0.30.3 0.90.90.10.1 0.30.3

0.50.5

0.70.7
0.50.5

0.10.1

(b) Subnetwork selection

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(c) Bayesian inference

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(d) Prediction

(a) Train a neural network to a MAP solution
(b) Identify a small subset of the weights
(c) Estimate a posterior distribution over the selected subset
(d) Predict using the mix of Bayesian and deterministic weights

Daxberger et al. (2021). Bayesian Deep Learning via Subnetwork Inference. ICML
33

Complex covariances can raise from mean-field and depth

Covariance heatmap for mean-field approximate posteriors trained on FashionMNIST.

(a) One weight
matrix.

(b) 5-layers (linear) (c) 10-layers (linear) (d) 5-layers (Leaky
ReLU)

(e) 10-layers (Leaky
ReLU)

Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS

34

The tradeoff depth/structure

For any sufficiently deep and wide neural network, there exists a mean-field distribution which
induces the same distribution over function values as that induced by the posterior predictive

2 4 6 8 10

Number of hidden layers

0

50

100

150

W
a
ss

e
rs

te
in

 E
rr

o
r
E
W Linear

Leaky ReLU (α= 0.95)
Leaky ReLU (α= 0.5)
ReLU

2 4 6 8 10

Number of hidden layers

0

2

4

6

K
L

E
rr

o
r
K
L(
q

fu
ll
||
q

d
ia

g
) Linear

Leaky ReLU (α= 0.95)
Leaky ReLU (α= 0.5)
ReLU

Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS

35

Are structured posteriors worth? (Use case: CIFAR10)

For low-medium depth models having structured posterior seems to be important.

Architecture Covariance Accuracy (↑) NLL (↓) ECE (↓)

AlexNet Diagonal 75.5% 0.703 0.016
(low depth) Low-rank (WHVI) 88.5% 0.490 0.009

ResNet-18 Diagonal 84.3% 0.477 0.040
(medium depth) Low-rank (WHVI) 86.4% 0.616 0.029

Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS

Rossi at al. (2020). Walsh-Hadamard Variational Inference for Bayesian Deep Learning. NeurIPS
Osawa et al. (2019). Practical Deep Learning with Bayesian Principles. NeurIPS

36

Are structured posteriors worth? (Use case: ImageNet)

The importance of structured covariance seems to be diminished in very large-scale models.

Architecture Covariance Accuracy (↑) NLL (↓) ECE (↓)

DenseNet-161 Diagonal 78.6% 0.86 0.046
Low-rank 78.6% 0.83 0.020

ResNet-152 Diagonal 80.0% 0.86 0.057
Low-rank 79.1% 0.82 0.028

Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS

37

References i

Introduction to Variational Inference

• Jordan et al. (1999). An Introduction to Variational Methods for Graphical Models. Mach. Learn.

• Hoffman et al. (2013). Stochastic Variational Inference. JMLR

• Ranganath et al. (2014). Black Box Variational Inference. AISTATS

• Blei et al. (2017). Variational Inference: A Review for Statisticians. JASA

38

References ii

Monte-Carlo Dropout for Bayesian Neural Networks and follow-up

• Srivastava et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
JMLR

• Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS

• Gal (2016). Uncertainty in Deep Learning. University of Cambridge (PhD Thesis)

• Gal and Ghahramani (2016). Bayesian Convolutional Neural Networks with Bernoulli Approximate
Variational Inference. ICLR Workshop

• Gal and Ghahramani (2016). Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. ICML

• Kendall and Gal (2017). What Uncertainties Do We Need in Bayesian Deep Learning for Computer
Vision?. NeurIPS

• Li and Gal (2017). Dropout Inference in Bayesian Neural Networks with Alpha-divergences. ICML

39

References iii

• Hron et al. (2017). Variational Gaussian Dropout is not Bayesian. NeurIPS Workshop

• Hron et al (2018). Variational Bayesian Dropout: Pitfalls and Fixes. ICML

40

References iv

Variational Inference for Neural Networks

• Graves (2011). Practical Variational Inference for Neural Networks. NeurIPS

• Rezende et al. (2014). Stochastic Backpropagation and Approximate Inference in Deep Generative
Models. ICML

• Hernández-Lobato et al. (2015). Probabilistic Backpropagation for Scalable Learning of Bayesian
Neural Networks. ICML

• Blundell et al. (2015). Weight Uncertainty in Neural Networks. ICML

• Rezende et al. (2015).Variational Inference with Normalizing Flows. ICML

• Louizos and Welling (2016). Structured and Efficient Variational Deep Learning with Matrix
Gaussian Posteriors. ICML

• Kingma et al. (2016). Improving Variational Inference with Inverse Autoregressive Flow. NeurIPS

41

References v

• Liu et al. (2016). Stein Variational Gradient Descent: A General Purpose Bayesian Inference
Algorithm. NeurIPS

• Miller et al. (2016). Variational Boosting: Iteratively Refining Posterior Approximations. ICML

• Louizos and Welling (2017). Multiplicative Normalizing Flows for Variational Bayesian Neural
Networks. ICML

• Sun et al. (2017). Learning Structured Weight Uncertainty in Bayesian Neural Networks. AISTATS

• Khan et al. (2018). Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in ADAM.
ICML

• Rossi et al. (2018). Good Initializations of Variational Bayes for Deep Models. ICML

• Zhang et al. (2018). Noisy Natural Gradient as Variational Inference. ICML

• Ghosh et al. (2018). Structured Variational Learning of Bayesian Neural Networks with Horseshoe
Priors. ICML

• Osawa et al. (2019). Practical Deep Learning with Bayesian Principles. NeurIPS

42

References vi

• Sun et al. (2019). Functional Variational Bayesian Neural Networks. ICLR

• Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex
Weight Posterior Approximations. NeurIPS

• Rossi et al. (2020). Walsh-Hadamard Variational Inference for Bayesian Deep Learning. NeurIPS

• Daxberger et al. (2021). Bayesian Deep Learning via Subnetwork Inference. ICML

43

	An Introduction to Bayesian Neural Networks with Monte-Carlo Dropout
	An Introduction to Variational Inference
	Computation of Variational Objective

	Advances in Variational Inference for Bayesian Deep Learning

