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Roadmap of the tutorial

• Introduction to Bayesian Inference
• Bayesian inference as Optimization with Variational Inference

- Introduction to variational inference (objective and gradients)
- Challenges and solutions for variational inference on Bayesian neural networks

• Sampling with MCMC methods
• Alternatives for Approximate Bayesian Deep Learning
• Gaussian processes and Bayesian neural networks
• Priors and Model Selection
• Uncertainty Quantification with Bayesian Neural Networks
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An Introduction to Bayesian
Neural Networks with
Monte-Carlo Dropout



Let’s reuse what we know

Dropout is a simple and powerful method to avoid overfitting in deep neural networks.

At each iteration of train time, some units are dropped (with probability p).
At test time, all units are considered.

Srivastava et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR
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What happens if we use multiple dropout masks also at test time?

Compute the mean prediction as ŷ? ≈ 1
T
∑T

t f (x?; [{W̃
(1)
, . . . , W̃

(L)
}]t) and evaluate the

variance at test point Var[ŷ?]

Gal and Ghahramani (2016). Dropout as a Bayesian Approximation, ICML
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A bit more formal

• Training with regularized loss ...

L = 1
N

N∑
i=1

e(yi , f (xi )) + λ

L∑
l=1
‖W(l)‖2

. . . equivalent to do approximate Bayesian inference.

• If we define w = {W1, . . . ,WL} and a “posterior” distribution q(w) such that,

Wi = Mi · diag(zi ), with zij ∼ Bern(pi )

we can use the following objective

LELBO = −
N∑

i=1

∫
log p(yi | xi ,w)q(w) dw + KL [q(w) ‖ p(w)]

Why? What is this?
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An Introduction to Variational
Inference



Our problem setup

• Model: f (x; w) is a L-layer neural network
with weights w = {W(1), . . . ,W(L)}

• Likelihood:

p(Y |X,w) =
N∏

n=1
p(yn|xn,w) =

N∏
n=1

p(yn|f (xn; w))

• Prior:

p(w) =
L∏

l=1
p(W(i)) =

L∏
i=1

∏
jk
N (W (l)

jk | 0, 1)

• Posterior (using Bayes’s theorem):

p(w|Y,X) = p(Y|X,w)p(w)
p(Y|X)

We can’t compute the marginal likelihood . . .

p(Y|X) =
∫

p(Y|X,w)p(w) dw

. . . and we can’t compute the predictive distribution:

p(y∗|x∗, y,X) =
∫

p(y∗|x∗,w)p(w|Y,X) dw
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Variational inference

Solutions:

• Collapse the posterior on the most likely value (Maximum-a-Posteriori or MAP)
• Approximate the intractable posterior:

• Use Variational Inference

• Local approximation:
• Use Laplace approximation (local approximation at the MAP solution)

• Sample from the intractable posterior:
• Markov-Chain Monte-Carlo (Hamiltonian Monte-Carlo)

6



Variational inference

Solutions:

• Collapse the posterior on the most likely value (Maximum-a-Posteriori or MAP)
• Approximate the intractable posterior:

• Use Variational Inference

• Local approximation:
• Use Laplace approximation (local approximation at the MAP solution)

• Sample from the intractable posterior:
• Markov-Chain Monte-Carlo (Hamiltonian Monte-Carlo)

6



Variational Inference

Main idea
Instead of trying to solve intractable integrals, let’s solve an optimization problem.

A very general recipe:

• Introduce a set Q of distributions q(w)
• Define an objective which measures the “distance” between an arbitrary distribution

q(w) ∈ Q and p(w|Y,X)
• In the set of possible solutions Q, find the best q(w) that minimizes the “distance” to

p(w |Y,X)
Interpret q(w) as a distribution that approximates the intractable p(w|Y,X)
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Visual illustration of Variational Inference

Space of all possible solutions given a likelihood/prior pair

p(w |Y,X)
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Visual illustration of Variational Inference

Space of all possible solutions given a likelihood/prior pair

p(w |Y,X)

Set of approximating distributions Q

“D
ista

nce”

qbest(w)
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Variational Inference - Form of the approximation

• The mean-field approach imposes independent distributions for each component of w

q(w) =
L∏

l=1

D(l)
in∏

i=1

D(l)
out∏

j=1
q(W (l)

ij )

For notation purposes, all weights are concatenated in w ∈ RP (P is the number of weights
in the network)

• We start with Gaussian distributions

q(w) =
P∏

i=1
q(w i ) =

P∏
i=1
N (w i |µi , σ

2
i )

µi , σ
2
i are called variational parameters (for notation, they are collected into ν)
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Variational Inference - Objective

• We will use the KL divergence to measure the “distance” between the two distributions,

KL [q(w;ν) ‖ p(w|Y,X)] =
∫

q(w;ν) log q(w;ν)
p(w|Y,X) dw = Eq(w;ν)

[
log q(w;ν)

p(w|Y,X)

]
• A tractable objective to optimize q(w;ν) is obtained by manipulating the KL divergence

KL [q(w;ν) ‖ p(w|Y,X)] = −Eq(w;ν) [log p(Y|X,w)] + KL [q(w;ν) ‖ p(w)] + log p(Y|X)

• The last term is the problematic one . . .
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Variational Inference - Objective

• . . . but manipulating the previous expression

log p(Y|X)− KL [q(w;ν) ‖ p(w|Y,X)] = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν) ‖ p(w)]︸ ︷︷ ︸
LELBO

we have a computable objective
• Minimizing the original KL is equivalent to maximize LELBO

Note that KL [q(w;ν) ‖ p(w|Y,X)] ≥ 0:

• The right hand side is a lower bound to the marginal likelihood (hence the name)
• If we can make q(w;ν) equal to the posterior, our objective will be equal to the marginal

likelihood!
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Variational Inference - Objective

Variational objective (a.k.a. evidence lower bound) to be maximized wrt q(w;ν)

LELBO = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν)‖p(w)]

• First term is a model fitting term:

Eq(w;ν) [log p(Y|X,w)]

the higher the better the parameters drawn from q(w;ν) are at modeling the labels
• Second term is a regularization term:

−KL [q(w;ν)‖p(w)]

which penalizes q(w;ν) deviating too much from the prior
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Variational Inference - Computation

LELBO = Eq(w;ν) [log p(Y|X,w)]− KL [q(w;ν)‖p(w)]

• The second term can be expressed analytically by using the expression of the KL divergence
and it does not depend on the neural network architecture

• The first expectation is never analytically available for Bayesian neural networks but it can
be approximated using Monte Carlo integration:

Eq(w;ν) [log p(Y|X,w)] ≈ 1
NMC

NMC∑
i=1

log p(Y|X, w̃(h)), w̃(h) ∼ q(w;ν)

Hoffman et al. (2013). Stochastic Variational Inference. JMLR
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Variational Inference - Computation

LELBO = 1
NMC

NMC∑
i=1

log p(Y|X, w̃(h))− KL [q(w;ν)‖p(w)]

Remember: this estimator is unbiased and its variance shrinks ∝ 1/NMC,
independently of the dimensionality.

1 10 100 1000 10000
Monte Carlo samples

−750

−500

−250

0

E
L

B
O

Monte Carlo estimation of the ELBO
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Variational Inference - Optimization

We need to compute the gradients of the objective w.r.t the variational parameters ν

∇νLELBO = ∇νEq(w;ν) [log p(Y|X,w)]−∇νKL [q(w;ν)‖p(w)]

• The second term is easy (everything is deterministic)

• The first term requires a bit of work
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Variational Inference - Optimization

• The Monte Carlo approximation

Eq(w;ν) [log p(Y|X,w)] ≈ 1
NMC

NMC∑
h=1

log p(Y|X, w̃(h))

makes it tricky to optimize the objective
• With q(w;ν) fixed, when we resample w from q(w;ν) we obtain a different value!
• How can we make gradient updates to the µi , σ

2
i parameters of q(w;ν)?

• Answer: freeze the randomness within Monte Carlo!
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Variational Inference - Reparameterization trick

∇νEq(w;ν) log p(Y|X,w)

Idea:

• Samples of w can be obtained by a deterministic transformation φ of a random variable
ε ∼ p(ε), such that p(ε) does not depend on the variational parameters

• The variational parameters ν are parameters of the function φ
• Use the chain rule of differentiation to push the gradient though this function φ

ε

p(ε)

w

q(w)
φ(·;ν) log p(Y|X,w)
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Variational Inference - Reparameterization trick (Derivation)

Key observation

∇νEq(w;ν) log p(Y|X,w) = Ep(ε)∇ν log p(Y|X,w)|w=φ(ε;ν)

Now, we can turn the gradient of an expectation into an expectation of a gradient.

∇νEq(w;ν) log p(Y|X,w) = ∇νEp(ε) log p(Y|X,w)|w=φ(ε;ν)

= Ep(ε)
[
∇ν log p(Y|X,w)|w=φ(ε;ν)

]
= Ep(ε)

[
∇w log p(Y|X,w)|w=φ(ε;ν)∇ν

]
≈ 1

NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

Good news: if you use any auto-diff tool (PyTorch, Tensorflow, JAX, NumPyro, etc.), you will
never compute this gradients manually.
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Variational Inference - Reparameterization trick (Properties)

∇νEq(w;ν) log p(Y|X,w) ≈ 1
NMC

NMC∑
h=1
∇w log p(Y|X,w)|w=φ(ε̃(h);ν)∇νφ(ε̃(h);ν), ε̃(h) ∼ p(ε)

• Estimation of the gradients is unbiased
• Need to be able to sample from p(ε), but not from q(w;ν)
• The likelihood p(Y|X,w) must be differentiable →

The neural network f (x; w) must be differentiable
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Variational Inference with Stochastic Optimization

L̃ELBO = 1
NMC

NMC∑
h=1

log p(Y|X, w̃(h))− KL [q(w;ν)‖p(w)]

• We can get unbiased estimate by selecting M out of N data

log p(Y|X, w̃(h)) ≈ N
M

∑
i∈minibatch

log p(yi |xi , w̃(h))

• We can use stochastic gradient optimization of our approximate variational objective with
w̃(h) = f (ε̃(h);ν) and ε̃(h) ∼ p(ε)

Hoffman et al. (2013). Stochastic Variational Inference. JMLR
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Variational Inference with Stochastic Optimization

ν′ = ν + αt
2 ∇ν(L̃ELBO) αt → 0

Robbins and Monro, AoMS, 1951
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A simple animation of stochastic variational inference in practice
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Advances in Variational Inference
for Bayesian Deep Learning



Variance analysis of Stochastic Variational Inference

Let Li = log p(y i | xi ,w) the likelihood contribution from {y i , xi} in minibatch of size M

Var [log p(Y|X,w)] = N2
(

1
M Var[Li ] + M − 1

M Cov[Li , Lj ]
)

Solutions:

• Make Cov[Li , Lj ] = 0 by resampling p(ε) for every data-point (for each layer,
NMC ×M × Din × Dout times)

I Computational intractable

• Move the stochasticity from the weights to the activations
I The local reparameterization trick

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS
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NMC ×M × Din × Dout times)

I Computational intractable
• Move the stochasticity from the weights to the activations

I The local reparameterization trick

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS
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The local reparameterization trick

If q(W ij ) = N (W ij |µij , σ
2
ij ),

then q(Aij ) = N (Aij |mij , s2
ij ), with

mij =
∑

k
X ikµkj , s2

ij =
∑

k
X 2

ikσ
2
kj

Sampling from q(A) requires only to sample only
M × Dout times from q(ε).

Kingma et al. (2015). Variational Dropout and the Local Reparameterization Trick. NeurIPS 24



The local reparameterization trick (summary)
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SNR analysis of stochastic variational inference (MLP-MNIST-1.80M param.)

Practical improvements for training due to lower stochastic variance (speed-up convergence of
LELBO or smaller batch-size)

Adapted from github.com/JavierAntoran/Bayesian-Neural-Networks
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Richer family of parameterizations

Problem:
Mean-field Gaussians, albeit very simple to
implement, is generally a rough approximation.
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Here is where we deviate from standard VI methods

Working with full covariance is completely intractable
Assume we have one hidden layer with weights matrix W of dimension 256× 256. From
reshaping W in vector form w ∈ R65536, the covariance Σ is a matrix 65536× 65536.

Memory required: ∼ 16 GB (only to store Σ, in single-point precision)

Simple solution:
Use mean-field for columns and full covariance for the rows of W:,i .

q(W) =
256∏
i=1

q(W:,i ) =
256∏
i=1
N (W:,i |µi ,Σi )

where now Σi is a 256× 256 covariance matrix.
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Putting some structure in the covariance matrix

(a) Factorized (b) MVG (c) Block Triangular (d) Full

Zhang et al. (2018). Noisy Natural Gradient as Variational Inference. ICML
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Advances in computational efficient variational approximations

Matrix Variate Gaussian distribution

q(W) =MN (W |M,U,V) =
exp( 1

2 Tr[V−1(W−M)>U−1(W−M)])
(2π)DinDout/2|V|Dout/2|U|Din/2

M ∈ RDin×Dout is the mean, U ∈ RDin×Din is the covariance matrix among rows and
V ∈ RDout×Dout is the covariance matrix among columns.

Connected with Gaussian distribution:

vec(W) ∼ N (vec(M),V⊗U)

Louizos and Welling (2016). Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.
ICML
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Matrix Variate Gaussian distribution

q(W) =MN (W |M,U,V) =
exp( 1

2 Tr[V−1(W−M)>U−1(W−M)])
(2π)DinDout/2|V|Dout/2|U|Din/2

M ∈ RDin×Dout is the mean, U ∈ RDin×Din is the covariance matrix among rows and
V ∈ RDout×Dout is the covariance matrix among columns.

Reparameterization trick for A = XW:

q(A) =MN (XM,XUX>,V)

Louizos and Welling (2016). Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors.
ICML
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Structured posterior with connection to kernel methods

Impose a structure on the weight matrix inspired by scalable kernel methods

W =

S1


H
+1 −1 −1 +1

+1 +1 −1 −1

+1 −1 +1 −1

+1 +1 +1 +1


g∼N (µ,Σ)


H
+1 −1 −1 +1

+1 +1 −1 −1

+1 −1 +1 −1

+1 +1 +1 +1


S2


Benefit:
• Space complexity for storing W:
O(D2) −→ O(D).

• Time complexity for Wx:
O(D2) −→ O(D log D).

cov{g}

cov{vect(W)}

Rossi at al. (2020). Walsh-Hadamard Variational Inference for Bayesian Deep Learning. NeurIPS 30



Keeping an eye to energy efficiency
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Comparison between Monte Carlo dropout ( ), Matrix Variate Gaussian ( ) and Hadamard
factorization ( ).
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Low rank factorization with variational inference

Perfoming tensor decomposition with variational inference is not straightforward.
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Hadamard fact. (64) Tensor fact. (64)

Hadamard fact. (256) Tensor fact. (256)

The redundant variational parameterization induced by the tensor cores makes the optimization
landscapes highly multi-modal, thus leading to slow convergence.

Rossi at al. (2020). Walsh-Hadamard Variational Inference for Bayesian Deep Learning. NeurIPS
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Imposing low-rank structure by doing inference on a subset of weights
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(b) Subnetwork selection

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(c) Bayesian inference

x1 x2

h2h1 h3

y

0.50.5
0.10.1 0.30.3

0.70.7

(d) Prediction

(a) Train a neural network to a MAP solution
(b) Identify a small subset of the weights
(c) Estimate a posterior distribution over the selected subset
(d) Predict using the mix of Bayesian and deterministic weights

Daxberger et al. (2021). Bayesian Deep Learning via Subnetwork Inference. ICML
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Complex covariances can raise from mean-field and depth

Covariance heatmap for mean-field approximate posteriors trained on FashionMNIST.

(a) One weight
matrix.

(b) 5-layers (linear) (c) 10-layers (linear) (d) 5-layers (Leaky
ReLU)

(e) 10-layers (Leaky
ReLU)

Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS

34



The tradeoff depth/structure

For any sufficiently deep and wide neural network, there exists a mean-field distribution which
induces the same distribution over function values as that induced by the posterior predictive
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Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS
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Are structured posteriors worth? (Use case: CIFAR10)

For low-medium depth models having structured posterior seems to be important.

Architecture Covariance Accuracy (↑) NLL (↓) ECE (↓)

AlexNet Diagonal 75.5% 0.703 0.016
(low depth) Low-rank (WHVI) 88.5% 0.490 0.009

ResNet-18 Diagonal 84.3% 0.477 0.040
(medium depth) Low-rank (WHVI) 86.4% 0.616 0.029

Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS

Rossi at al. (2020). Walsh-Hadamard Variational Inference for Bayesian Deep Learning. NeurIPS
Osawa et al. (2019). Practical Deep Learning with Bayesian Principles. NeurIPS
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Are structured posteriors worth? (Use case: ImageNet)

The importance of structured covariance seems to be diminished in very large-scale models.

Architecture Covariance Accuracy (↑) NLL (↓) ECE (↓)

DenseNet-161 Diagonal 78.6% 0.86 0.046
Low-rank 78.6% 0.83 0.020

ResNet-152 Diagonal 80.0% 0.86 0.057
Low-rank 79.1% 0.82 0.028

Farquhar et al. (2020). Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior
Approximations. NeurIPS
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