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Introduction



Why a tutorial on Bayesian deep learning?
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Role of uncertainty today

Accounting for uncertainty, if possible, is important
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The race to bigger and more accurate models
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The race to bigger and more accurate models
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Bayesian inference:
A quick cheat sheet



A quick introduction to Bayesian inference: Syntax of probabilities

Consider two continuous random variables a and b

• Sum rule:
p(a) =

∫
p(a, b)db

• Product rule:
p(a, b) = p(a|b)p(b) = p(b|a)p(a)

• Bayes’ rule:
p(b|a) = p(a|b)p(b)

p(a)

Note: Bayes’ rule is a direct consequence of the product rule
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A quick introduction to Bayesian inference: Expectations

• Expectations:
f = Ep(a) [f (a)] =

∫
f (a) p(a) da

• Example: the mean
µ = Ep(a) [a] =

∫
a p(a) da

• Monte Carlo estimate by averaging over samples from p(a):

f ≈ 1
N

N∑
i=1

f (ai ) with ai ∼ p(a)
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Definitions

• Data is a set of N inputs/labels pairs:

D = {(xi , yi )}i=1,...,N with

x ∈ RD , X = (x1, . . . , xN)> and

y ∈ RO , Y = (y1, . . . , yN)>

• Goal: Estimate a function
f(x) : RD → RO
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Deep Neural Networks

• Implement a composition of parametric functions

f(x) = h(L)
(

h(L−1)
(
· · ·h(1) (x)

))
with h(l) = a

(
W(l)h(l−1)

)

Notation: the bias is included in W 8



Loss Minimization – Regression

• Define w = {W(1), . . . ,W(L)}
• Definition of the quadratic loss function:

L =
N∑

i=1
‖yi − f(xi ; w)‖2

• Solution to the regression problem not available in closed form:

∇wL = 0

• Back-propagation to calculate gradients to perform optimization of L wrt w
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Probabilistic Interpretation of Loss Minimization

• Consider a simple transformation of the loss function

‖yi − f(xi ; w)‖2 exp
(
−γ‖yi − f(xi ; w)‖2)
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• Minimizing the quadratic loss equivalent to maximizing the Gaussian likelihood function

exp (−γL) =
∏

i
exp

(
−γ‖yi − f(xi ; w)‖2)

∝ N
(

Y
∣∣F, 1

2γ IN×O

)
Gaussian distribution
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Probabilistic Interpretation of Loss Minimization

• The likelihood N
(

y|Xw, 1
2γ

)
hints to the fact that we are assuming:

yi = f(xi ; w) + εi

with εi ∼ N (εi |0, 1
2γ IO)

• Remark: the likelihood is not a probability!
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Bayesian Inference

• Viewing parameters and data as random variables, we can use Bayes Theorem as follows:

p(w) p(w|Y,X)

p(w|Y,X) = p(Y|X,w)p(w)∫
p(Y|X,w)p(w)dw

12



Bayesian Inference

• Bayes rule:
p(w|X,Y) = p(Y|X,w)p(w)∫

p(Y|X,w)p(w)dw
= p(Y|X,w)p(w)

p(Y|X)

• Likelihood : p(Y|X,w)
• Measure of “fitness”

• Prior density: p(w)
• Anything we know about parameters before we see any data

• Posterior density: p(w|X,Y)
• Distribution over parameters after observing data

• Marginal likelihood: p(Y|X)
• It is a normalization constant – ensures

∫
p(w|X, Y) dw = 1.

13
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Bayesian Inference - Predictive Distribution

• Predictions can be made in the form of distributions:

p(y∗|x∗,Y,X) =
∫

p(y∗|x∗,w)p(w|Y,X)dw

• Notice how parameters disappear from the expression of the predictive distribution!
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Bayesian Inference - Model Selection

• Marginal likelihood
p(Y|X) =

∫
p(Y|X,w)p(w)dw

depends on the modeling choice.
• For models M1 and M2 we have:

p(Y|X,M1) and p(Y|X,M2)

• We can pick the model with the largest marginal likelihood. . .
• . . .or we can assign priors p(M1) and p(M2) and use Bayes theorem to obtain:

p(Mi |Y,X) = p(Y|X,Mi )p(Mi )∑
j p(Y|X,Mj)p(Mj)

15
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Bayesian Linear Regression - Example

• Polynomial regression with Bayesian linear models:

f (x) =
k∑

i=0
w ix i

• The model is linear in the parameters but can model functions through polynomials
• Define:

Φ =

 ϕ1(x1) . . . ϕD(x1)
...

. . .
...

ϕ1(xN) . . . ϕD(xN)



• Assume a Gaussian likelihood:

p(y|X,w) = N (y|Φw, σ2I)

• Assume a Gaussian prior:
p(w) = N (w|0,Σ)
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Bayesian Linear Regression - Example

• The posterior is Gaussian:
p(w|X, y, σ2) = N (w|0,S)

• Covariance:

Σ =
(

1
σ2 Φ>Φ + S−1

)−1

• Mean:
µ = 1

σ2 ΣΦ>y

• The predictive distribution is also Gaussian:

p(y∗|X, y, x∗, σ2) = N (y∗|ϕ(x∗)>µ, σ2 +ϕ(x∗)>Σϕ(x∗))

• The marginal likelihood is Gaussian:

p(y|X, y, σ2) = N (y|0, σ2I + ΦSΦ>)
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Bayesian Linear Regression - Example

Some data generated from a known polynomial of order k = 2
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Bayesian Linear Regression - Example
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Bayesian Linear Regression - Example

−2 0 2
x

−5

0

5

10

y

Linear regression (polyn. order 1)

20



Bayesian Linear Regression - Example
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Bayesian Linear Regression - Example
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Bayesian Linear Regression - Example
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Bayesian Linear Regression - Example
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Bayesian Linear Regression - Example

Marginal likelihood as a way to choose the “best” model
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Nonlinear Models

• Illustration of Bayesian inference for a simple nonlinear model.

26



Back to Deep Neural Networks

• The composition makes the dependence wrt parameter highly nontrivial.

f(x) = h(L)
(

h(L−1)
(
· · ·h(1) (x)

))
with h(l) = a

(
W(l)h(l−1)

)

27



Bayesian Inference for Deep Learning

Applying Bayesian inference to deep neural networks is extremely challenging.

1. How can we work with intractable
posterior?

2. How can we handle millions to billions
model parameters? What about scalability
to big datasets?

3. What kind of priors should we use for these
models?

4. Can we trust the uncertainty quantification
of Bayesian inference?

5. . . .
From losslandscape.com
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Roadmap of the tutorial

• Introduction to Bayesian Inference
- A refresh of probability theory and Bayes’ theorem
- Bayesian linear regression: prior, posterior and model selection

• Bayesian inference as Optimization with Variational Inference
• Sampling with MCMC methods
• Alternatives for Approximate Bayesian Deep Learning
• Gaussian processes and Bayesian neural networks
• Priors and Model Selection
• Uncertainty Quantification with Bayesian Neural Networks
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Roadmap of the tutorial

• Introduction to Bayesian Inference
• Bayesian inference as Optimization with Variational Inference
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• Alternatives for Approximate Bayesian Deep Learning
• Gaussian processes and Bayesian neural networks
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Roadmap of the tutorial

• Introduction to Bayesian Inference
• Bayesian inference as Optimization with Variational Inference
• Sampling with MCMC methods
• Alternatives for Approximate Bayesian Deep Learning
• Gaussian processes and Bayesian neural networks
• Priors and Model Selection
• Uncertainty Quantification with Bayesian Neural Networks

- Calibration of uncertainty
- Challenges of out-of-distribution data
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